RIEMANN-CESÀRO METHODS OF SUMMABILITY V

HIROSHI HIROKAWA

(Received March 22, 1960)

1. Introduction. Let s_n^{α} be the Cesàro sum of a series $\sum_{n=0}^{\infty} a_n$ with $a_0 = 0$, that is, A_n^{α} being Andersen's notation,

$$s_n^{\alpha} = \sum_{\nu=1}^n A_{n-\nu}^{\alpha} \ a_{\nu},$$

and let σ_n^{α} be the Cesàro mean of the series $\sum_{n=0}^{\infty} a_n$, that is, $\sigma_n^{\alpha} = s_n^{\gamma}/A_n^{\alpha}$. The series $\sum_{n=0}^{\infty} a_n$ is said to be evaluable (C, α) , $\alpha > -1$, to s, if $\sigma_n^{\alpha} \to s$ as $n \to \infty$. Let k > 0 and $\lambda_n = \log(n+1)$. If, when $\omega \to \infty$,

$$\sum_{\lambda_n < \omega} \left(1 - \frac{\lambda_n}{\omega} \right)^k a_n \to s,$$

then the series $\sum_{n=0}^{\infty} a_n$ is said to be evaluable $(\log n, k)$ to s. It is well-known that a series evaluable (C, k) is also evaluable $(\log n, k)$ to the same sum. In the following, let p be a positive integer and let α be a real number such that $\alpha \ge -1$. The series $\sum_{n=0}^{\infty} a_n$ is said to be evaluable by Riemann-Cesàro method of order p and index α , or briefly, to be evaluable (R, p, α) to s, if the series

$$t^{\alpha+1}\sum_{n=1}^{\infty}s_n^{\alpha}\left(\frac{\sin nt}{nt}\right)^p$$

converges in some interval $0 < t < t_0$ and its sum tends to $C_{p,\alpha}$ s as $t \to 0+$, where

$$C_{p,\alpha} = \begin{cases} rac{1}{\Gamma(\alpha+1)} \int_0^\infty u^{\alpha-p} \; (\sin \; u)^p \; du, \; -1 < \alpha < p-1 \; ext{or} \; \alpha=0, p=1, \\ 1 \; , \qquad \qquad \alpha=-1. \end{cases}$$

Under this definition, the summabilities (R, p, -1) and (R, p, 0) are the well-known summabilities (R, p) and (R_p) , respectively. In our earlier papers [2, 3, 4],