ON DIFFERENTIABLE MANIFOLDS WITH (ϕ, ψ) -STRUCTURES

SHIGEO SASAKI

(Received September 5, 1960)

1. Introduction. In a previous paper,¹⁾ we have defined for some odd dimensional manifolds two kinds of structures which we have called (ϕ, ξ, η) -structure and (ϕ, ξ, η, g) -structure. The latter is a (ϕ, ξ, η) -structure with a positive definite Riemannian metric g which stands in a notable relation with the (ϕ, ξ, η) -structure. These structures are remarkable in the sense that any differentiable manifold with (ϕ, ξ, η) -structure is an almost contact manifold and any almost contact manifold admits (ϕ, ξ, η, g) -structure.

In this paper, we shall study two kinds of structures for differentiable manifolds of any dimension, the first one $((\phi, \psi)$ -structure) may be regarded as generalizations of almost complex structure, almost product structure and (ϕ, ξ, η) structure, and the second one $((\phi, \psi, g)$ -structure) may be regarded as generalizasions of almost Hermitian structure, almost product metric structure and (ϕ, ξ, η, g) structure. We shall confine ourselves only to algebraic considerations, analytic considerations will be published in later papers.

2. (ϕ, ψ) -structures.

1°. Let M^n be a differentiable manifold of dimension *n*. Suppose first that there exist over M^n two tensor fields ϕ_j^i and $\psi_j^{i(2)}$ of type (1, 1) which satisfy the following conditions:

(2.1)	rank �	$\left \frac{i}{j} \right $	=l,
-------	---------	------------------------------	-----

(2.2) $\operatorname{rank} |\boldsymbol{\psi}_j^i| = m,$

$$(2.3) \qquad \qquad \phi_i^i \psi_k^i = 0,$$

 $(2.4) \qquad \qquad \boldsymbol{\psi}_{i}^{i}\boldsymbol{\phi}_{k}^{i}=0,$

1) S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tõhoku Math. Journ. 12(1960) pp. 459-476.

 $\begin{array}{l} i,j,k,a,\beta,\gamma=1,2,\ldots,n(=l+m),\\ a,b,c=1,2,\ldots,l,\\ p,q,r=l+1,\ldots,n\\ A=1,2,\ldots,l', \qquad A^*=l'+A,\\ E,F=1,\ldots,l_1, \qquad H,K=l_1+1,\ldots,l(=l_1+l_2)\\ L=l+1,\ldots,l+m', \qquad L^*=l+m'+L,\\ M,N=l+1,\ldots,l+m_1,\\ S,T=l+m_1+1,\ldots,n. \end{array}$

²⁾ We assume, unless otherwise stated, that the indices run the following range of integers: