A NOTE ON THE GENERALIZED HOMOLOGY THEORY

FUICHI UCHIDA

(Received November 4, 1963)

G. W. Whitehead [6] has shown that, for any spectrum $E, \tilde{\mathfrak{H}}(E)$ and $\tilde{\mathfrak{H}}^*(E)$ are generalized homology and cohomology theories on the category \mathfrak{P}_0 whose objects are finite CW-complexes with base vertex.

In this note, we show that, for any spectrum E, $\tilde{\mathfrak{H}}(E)$ and $\tilde{\mathfrak{H}}^*(E)$ are defined on the category \mathfrak{W}_0 .

1. Let \mathfrak{W}_0 be the category of spaces with base point having the homotopy type of a CW-complex, and a map of \mathfrak{W}_0 is a continuous, base point preserving map. In this note, we shall use the terms "space" and "map" to refer to objects and maps of \mathfrak{W}_0 . Let \mathfrak{W}_0^n be the category of *n*-ads [6].

Let T be the unit interval with base point 0, $\vec{T} = S^0$ be the subspace $\{0, 1\}$ of T, and $S = S^1 = T/\vec{T}$. The *cone* over X is the space $TX = T \land X$, and the *suspension* of X is the space $SX = S \land X$, where the space $X_1 \land \cdots \land X_n$ is the *n*-fold reduced join of the spaces X_i [6].

Let [X, Y] be the set of homotopy classes of maps of X into Y, if $f: X \to Y$, let [f] be the homotopy class of f. Then [,] is a functor on $\mathfrak{W}_0 \times \mathfrak{W}_0$ to the category of sets with base points. If $f: X' \to X$, $g: Y \to Y'$, let

$$f^{\texttt{\#}} = [f, 1] : [X, Y] \longrightarrow [X', Y],$$
$$g_{\texttt{\#}} = [1, g] : [X, Y] \longrightarrow [X, Y'].$$

LEMMA 1.1. Let X, Y be CW-complexes and $f: X \to Y$ be a continuous one-to-one onto map. Then the map f is a homeomorphism, if and only if, for any open cell τ of Y, there exist finite open cells $\sigma_1, \dots, \sigma_n$ of X such that $\tau \subset f(\sigma_1 \cup \dots \cup \sigma_n)$.

PROOF. If the map f is a homeomorphism, then for any open cell τ of Y, $f^{-1}(\bar{\tau})$ is a compact set in X, and hence $f^{-1}(\bar{\tau})$ is contained in a finite union of open cells $\sigma_1, \dots, \sigma_n$ of X [4]. Thus τ is contained in $f(\sigma_1 \cup \dots \cup \sigma_n)$. Conversely, suppose that for any open cell τ of Y, $f^{-1}(\tau)$ is contained in a finite union of open cells $\sigma_1, \dots, \sigma_n$ of X. Then $\bar{\tau} \subset f(\bar{\sigma}_1 \cup \dots \cup \bar{\sigma}_n)$. Since f is a homeomorphism on a compact set, $f|\bar{\sigma}_1 \cup \dots \cup \bar{\sigma}_n$ is a homeomorphism and hence $f^{-1}|\bar{\tau}$ is continuous. Therefore f^{-1} is continuous.

2. A spectrum E is a sequence $\{E_n | n \in Z\}$ of spaces together with a sequence of maps

 $\mathcal{E}_n: SE_n \longrightarrow E_{n+1},$