A COMPLEMENT TO "ON THE UNITARY EQUIVALENCE AMONG THE COMPONENTS OF DECOMPOSITIONS OF REPRESENTATIONS OF INVOLUTIVE BANACH ALGEBRAS AND THE ASSOCIATED DIAGONAL ALGEBRAS"

MASAMICHI TAKESAKI

(Received March 24, 1964)

After the publication of my paper, indicated in the title, I obtained the following complementary results of Remark in p.370 and Theorem 3.4.

THEOREM. Let A_1 and A_2 be two maximal abelian subalgebras of a von Neumann algebra M. Let e_1 and e_2 be non-zero projections of A_1 and A_2 respectively. If there exists a central projection z of M such that $e_1 \leq z$ and $e_2 \leq (I-z)$, then A_1e_1 and A_2e_2 are unrelated. Hence if A_1e_1 and A_2e_2 are similar, then e_1 and e_2 have the same central carrier.

PROOF. We choose a weakly dense uniformly separable C*-subalgebra \mathfrak{A} of M which contains z. Let $A_1 = L^{\infty}(\Gamma_1, \mu_1)$ and $A_2 = L^{\infty}(\Gamma_2, \mu_2)$. Let E_1 and E_2 be the Borel subsets of Γ_1 and Γ_2 associated with e_1 and e_2 respectively. If we decompose the underlying Hilbert space \mathfrak{F} of M and the operator x of \mathfrak{A} with respect to A_1 and A_2 as follows;

$$\mathfrak{H} = \int_{\Gamma_1}^{\oplus} \mathfrak{H}^1(\mathfrak{P}_1) \ d\mu_1(\mathfrak{P}_1), \qquad \qquad \mathfrak{H} = \int_{\Gamma_2}^{\oplus} \mathfrak{H}^2(\mathfrak{P}_2) d\mu_2(\mathfrak{P}_2),$$

and

$$x=\int_{arGamma_1}^\oplus x^1(arma_1)d\mu_1(arma_1), \qquad \qquad x=\int_{arGamma_2}^\oplus x^2(arma_2) \ d\mu_2(arma_2).$$

Then we have $z^{i}(\gamma_{1}) = I$ for every $\gamma_{1} \in E_{1}$ and $z^{2}(\gamma_{2}) = 0$ for every $\gamma_{2} \in E_{2}$ by elimination of null sets from E_{1} and E_{2} . Hence $\Re_{\mathcal{A}_{1},\mathcal{A}_{2}}^{\mathcal{M},\Phi^{1},\Phi^{2}}(\gamma_{1},\gamma_{2})$ does not hold for every $(\gamma_{1}, \gamma_{2}) \in E_{1} \times E_{2}$, where Φ^{i} is the family of the representation of \mathfrak{A} defined by $x \to x^{i}(\gamma_{i})$ (i = 1, 2). The second assertion is a direct consequence of the first.

As an interpretation of the above theorem, we get the following

COROLLARY. Let φ_1 and φ_2 be two representations of an involutive Banach algebra \mathfrak{B} over Hilbert spaces \mathfrak{H}_1 and \mathfrak{H}_2 . Decompose φ_1 and φ_2 into direct integrals of irreducible representations over some standard measure