SUMMABILITY METHODS OF BOREL TYPE AND TAUBERIAN SERIES

KYUHEI IKENO

(Received March 16, 1964)

1. Introduction. Let $t_p = \sum_{k=0}^n c_{pk} s_k$ denote a linear transformation of a sequence $s_n = \sum_{k=0}^n u_k$ where $\{u_k\}$ is a real or complex sequence. When a sequence $\{u_n\}$ satisfies Tauberian condition of the form $\lambda_n u_n = O(1)^{10}$, it is sometimes possible to estimate $\limsup |t_p - s_n|$ even when $\{s_n\}$ and $\{t_p\}$ are divergent. Such estimation was initiated by H. Hadwiger [5]. R. P. Agnew [1], [2], [3] and [4] gave such estimations for Borel, Abel and integral transforms.

In a recent paper, A.Meir [7] defined summability methods of Borel type B(a,q) which contained Borel, Valiron, Euler, Taylor and S_{α} transformation and showed the following fact:

If
$$t_p = \sum_{k=0}^{\infty} c_{pk} s_k$$
 belongs to $B(a, q)$,

(1. 1)
$$\limsup_{\alpha \to \infty} |\sqrt{n} u_n| = L < +\infty$$

and $n = n(\alpha)$, $p = p(\alpha)$ are positive increasing functions tending to $+\infty$ as $\alpha \to \infty$ such that

(1. 2)
$$\limsup_{q\to\infty} |n-q|/\sqrt{q} = M < +\infty,$$

then

(1. 3)
$$\limsup_{\alpha \to \infty} |t_p - s_n| \leq A \cdot L,$$

where A is a finite constant depending only on M. In the present paper, the author will consider the case

$$\limsup_{\alpha\to\infty} |n-q|/\sqrt{q} = +\infty$$

¹⁾ We have $\lambda_n = \sqrt{n}$ for Borel transforms and $\lambda_n = n$ for Abel transforms.