AN EXPLICIT REPRESENTATION OF THE GENERALIZED PRINCIPAL IDEAL THEOREM FOR THE RATIONAL GROUND FIELD

Shoichi Takahashi

(Received March 1, 1964)

In the following lines the author wants to give an explicit representation for generalized principal ideal theorems of S.Iyanaga [1] and T.Tannaka [2] for the case of rational ground field.

Let K be the "Strahlklassenkörper" over k, with "Geschlechtermodul" $\mathfrak{F} = \mathfrak{F}(K/k)$, then every ideal \mathfrak{a} of k which is unramified in K, becomes principal ideal belonging to the principal class modulo \mathfrak{F} (Iyanaga [1]).

Tannaka [2] obtained, suggested by a conjecture of Prof. Deuring, a more precise form of the principal ideal theorem, he gave namely those bases $\theta(a)$ of a (unramified ideals in k), for which the units

$$\mathcal{E}(\mathfrak{a},\mathfrak{b})=rac{ heta(\mathfrak{a})\ heta(\mathfrak{b})^{\sigma(\mathfrak{a})}}{ heta(\mathfrak{a}\mathfrak{b})}$$

lie in the ground field. There $\sigma(\mathfrak{a}) = (K/k, \mathfrak{a})$ means the Artin-automorphism of \mathfrak{a} .

Let now n,m be two natural numbers which are relatively prime to each other, $\zeta_n = \exp\left(\frac{2\pi i}{n}\right)$ and \mathfrak{F}_n the "Geschlechtermodul" of $Q(\zeta_n)/Q$ (Q: rational number field), then we can find a unit E(m) in $Q(\zeta_n)$ explicitly, for which

$$m \equiv \boldsymbol{E}(m) \pmod{\mathfrak{F}_n}$$

and

$$rac{oldsymbol{E}(m)(oldsymbol{E}(m^{'}))^{\sigma(m)}}{oldsymbol{E}(mm^{'})}=1$$

hold.

1. Calculation of the "Geschlechtermodul". Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t} = n_1 n_2 \cdots n_t$ be a natural number, where p_1, p_2, \cdots, p_t are different prime numbers and $p_1 = 2$, $e_1 = 0$ or $e_1 = 2$, and \mathfrak{F}_n the "Geschlechtermodul" of $Q(\zeta_n)/Q$. We have then