REMARKS ON 4-DIMENSIONAL DIFFERENTIABLE MANIFOLDS

HIDEKIYO WAKAKUWA

(Received February 20, 1963) Revised January 25, 1964

Let X_4 be 4-dimensional differentiable manifold and let $B(X_4, Y, G)$ be an arbitrary tensor bundle over X_4 , where Y is a linear space of dimension 4^{p+q} with coordinates $(y_{j_1...j_q}^{i_1...i_q})^{1}$. It is well known ([1]) that the structural group G of $B(X_4, Y, G)$ is reducible to the orthogonal group O(4). And if X_4 is orientable, then it is easily seen that G is reducible to SO(4) or one of its subgroups. If especially Y is a 4²-dimensional linear space with coordinates (y_j^i) , then the matrix representation of SO(4) or its subgroup operates on Y as matrix transformations.

The purpose of this note is first to show the existence of two intrinsic (1-1)-type tensor bundles over X_4 , which are subbundles of $B(X_4, Y, G)$ and to show the existence or non existence of cross sections of the two intrinsic subbundles wholly depends on the group G (§2). These are owing to the speciality of SO(4).

Secondly, we classify X_4 following the structural group G and study further on each classes case by case (§3 ~ §7).

1. Preliminary. The local subgroups of SO(4) are treated by Ötsuki [2] in the standpoint of holonomy groups of 4-dimensional Riemannian manifolds. And the classification of structural equations of all connected subgroups of SO(4) is done by Ishihara [3] making use of the structural equation of SO(4) indicated by Chern [4]. We will consider it in another point of view and will do the classification of the connected subgroups of SO(4)in a different way.

As is known, SO(4) is locally represented as $SO(4) = SU(2) \otimes SU(2)$. SU(2)leaves invariant an anti-involution of the second kind and $SU(2) \otimes SU(2)$ leaves invariant that of the first kind which is the Kronecker product of the antiinvolutions left invariant by the two SU(2) (Cartan [5]; Berger [6]). SO(4)is the real representation of the group $SU(2) \otimes SU(2)$ restricted on the double element (real dimension 4) of the anti-involutions (see Appendix 1°). Let $\$_1$ and $\$_2$ be the complexifications of the Lie algebras of the first and the second SU(2). $\$_1$ and $\$_2$ are of complex dimension 3. Then $\$ = \$_1 + \$_2$ (direct sum)

¹⁾ Throughout this paper, the indices $i_1, j_1, i, j, a, b, \cdots$ run from 1 to 4, unless otherwise stated. This tensor is of type (p-q).