PRINCIPAL COFIBRATIONS

KlSUKE TSUCHIDA

(Received March 30, 1964)

Introduction. In this paper we shall define the notion of a principal cofibration which generalizes the cofibration $X \to C_f \to \Sigma Y$ induced by a map $f: X \to Y$ where C_f means the mapping cone of f and ΣY the reduced suspension of *Y.* The notion of a principal cofibration is a dual of a principal fibration in the sense of Peterson-Thomas [6].

One of the problem considered here is the following; under what conditions is a cofibration equivalent to a principal ? This is answered by Theorem 2.7 in $\S 2$.

In § 3 we dualize the results in [5], which are in the special case of induced cofibration. In $\S 4$ we mention an application to the Lusternik-Schnirelmann category and obtain a generalization of Berstein-Hilton's results.

1. Preliminaries. In this paper we assume that all spaces have base point denoted by * and all maps (homotopies) preserve (keep fixed) base point.

A map $q : B \to E$ is called a cofibration if it has the homotopy lowering property for all spaces, i.e. if, for each space P and for all maps $f_0: E \to P$ and homotopies $g_t : B \to P$ with $g_0 = f_0 q$, there exists a homotopy $f_t : E \to P$ with $g_t = f_t q$. If q is an inclusion map, this is the homotopy extension property. The quotient space $F = E/q(B)$ is called the cofibre of q. Frequently the cofibration $q : B \to E$ with cofibre *F* will be denoted by the sequence

q P $B \to E \to F$, where $p: E \to F$ is the projection.
Civen a map $f: A \to B$ let C be the m

Given a map $f: A \to B$, let C_f be the mapping cone of *f*, the space

ined from $CA \cup B$ by identifying (a 1) $\in CA$ with $f(a)$ where CA denotes obtained from $CA \cup B$ by identifying $(a, 1) \in CA$ with $f(a)$, where *CA* denotes the reduced cone over A.
The set of all homotopy classes of maps $A \rightarrow B$ will be denoted by

The set of all homotopy classes of maps $A \rightarrow B$ will be denoted by
R) which contains the distinguished element a i.e. the homotopy class $\pi(A, B)$, which contains the distinguished element *o*, i.e. the homotopy class
of the constant man $\star : A \to B$. The homotopy class of a man $f : A \to B$ is of the constant map $* : A \rightarrow B$. The homotopy class of a map $f : A \rightarrow B$ is denoted by $[f]$.

For maps $f : A \to C$ and $g : B \to C$, we define a map $f \nabla g : A \vee B \to C$ by

$$
(f \nabla g)(a, *) = f(a) \qquad a \in A
$$

$$
(f \nabla g)(*, b) = g(b) \qquad b \in B
$$