Tôhoku Math. Journ. Vol. 18, No. 3, 1966

EXTREME POINTS FOR REGULAR SUMMABILITY MATRICES*

GORDON MARSHALL PETERSEN

(Received February 11, 1966)

1. In this paper we shall be studying bounded sequences summed by a regular matrix. The usual norm for the space of bounded sequences is $||s_n|| = \sup_n |s_n|$ and the *unit ball* is the set of sequences with $||s_n|| \leq 1$. If A is a regular matrix, then \mathfrak{A} denotes the set of bounded sequences summed by A, \mathfrak{A} is called the *summability field* of A. If $\{s_n\}$ is summed by A, A-lim s_n denotes the value to which it is summed.

The following result is due to Brudno, see [4] and [2].

THEOREM 1. If $\mathfrak{A} \supset \mathfrak{B}$, then $A - \lim s_n = B - \lim s_n$ for every $\{s_n\} \in \mathfrak{B}$.

By the summability method \mathfrak{U} , we denote the set of all matrices which have \mathfrak{A} as their summability field. Let A be a regular matrix, h(A) is called the matrix norm of A, where

$$h(A) = \sup_{m} \sum_{n=1}^{\infty} |a_{m,n}| < \infty$$

It is clear that

$$1 \leq \sup |A - \lim s_n| \leq h(A)$$

where the sup is taken over all bounded sequences in the unit ball summed by A. The value of $\sup |A - \lim s_n|$ is a function of the summability field and we define the *field norm* $N(\mathfrak{A})$ by

$$N(\mathfrak{A}) = \sup |A - \lim s_n|$$

where the sup is taken over the unit ball. We can also consider,

^{*}This work has been supported, in part, by the Air Force Office of Scientific Research, (Office of Aerospace Research) U.S. Air Force, under contract no. AF 49(638)-1401.