NOTES ON COVARIANT ALMOST ANALYTIC VECTOR FIELDS

KENTARO YANO AND MITSUE AKO

(Received December 12, 1966)

1. Introduction. In a previous paper [4] we defined almost analytic vector fields in an almost complex space and generalized some of well known results for analytic vector fields in a Kähler space to those for almost analytic vector fields in the most general almost Hermitian space.

To define a contravariant almost analytic vector field we proceeded as follows:

In a complex manifold M covered by a system of neighborhoods U with complex coordinates $(z^*, z^{\bar{v}})^{1}$, a self conjugate contravariant vector field $(v^*, v^{\bar{v}})$, that is, a contravariant vector field $(v^*, v^{\bar{v}})$ satisfying $\bar{v}^e = v^{\bar{v}}$, is said to be analytic when the components v^* and $v^{\bar{v}}$ are analytic functions of zand \bar{z} respectively:

(1.1)
$$v^{\kappa} = v^{\kappa}(z), \quad v^{\overline{\kappa}} = v^{\overline{\kappa}}(\overline{z}).$$

The condition (1.1) is equivalent to

(1.2)
$$\partial_{\overline{\lambda}} v^{\kappa} = 0, \quad \partial_{\lambda} v^{\overline{\kappa}} = 0,$$

where $\partial_{\bar{\lambda}}$ means $\partial/\partial z^{\bar{\lambda}}$ and ∂_{λ} means $\partial/\partial z^{\lambda}$.

On the other hand, we have, in a complex manifold, a numerical tensor F of type (1, 1) given by

(1.3)
$$F_i^h = \left(\begin{array}{cc} \sqrt{-1} \ \delta_\lambda^{\epsilon} & 0\\ 0 & -\sqrt{-1} \ \delta_{\overline{\lambda}}^{\overline{\epsilon}} \end{array}\right)^{2}$$

and consequently, putting

¹⁾ Here and in the sequel the Greek indices κ , λ , μ , \cdots run over the range $\{1, 2, \dots, n\}$ and $\overline{\kappa}, \overline{\lambda}, \overline{\mu}, \cdots$ the range $\{\overline{1}, \overline{2}, \dots, \overline{n}\}$.

²⁾ Here and in the sequel, the Roman indices h, i, j, \cdots run over the range 1, 2, \cdots, n ; $\overline{1}, \overline{2}, \cdots, \overline{n}$.