ON THE EXISTENCE OF O-CURVES II *)

JUNJI KATO

(Received November 19, 1966)

Cooke [1] has discussed asymptotic behaviors of solutions of a functional differential equation

$$\dot{u}(t) + au(t - r(t)) = 0$$

under the assumption that r(t) is a non-negative continuous function which satisfies the conditions

$$r(t) \to 0$$
 as $t \to \infty$ and $\int_0^\infty r(t) dt < \infty$.

In the previous paper [3], we have obtained some results concerning the existence of O-curves and some kind of the asymptotic equivalence, which we shall call the asymptotic semi-equivalence (for the definition, see the below). By applying the similar arguments to those used in [3], we shall discuss the same problems as discussed by Cooke, for more general equations.

Here, we shall give the following definitions:

DEFINITION 1. A solution of a system will be called to be an O-curve of the system, if it tends to zero as $t \to \infty$.

DEFINITION 2. Two systems (E_1) and (E_2) are said to be asymptotically semi-equivalent, provided that for any bounded solution of (E_1) (or (E_2)) we can find a solution of (E_2) (or (E_1)) which approaches the bounded solution of (E_1) (or (E_2) , respectively) for infinitely increasing t. In the case where we can remove the boundedness for the given solution, two systems (E_1) and (E_2) are asymptotically equivalent (cf. [2]).

Let $r \ge 0$ be a given constant. C^n denotes the space of continuous functions mapping the interval [-r,0] into the Euclidean n-space E^n with a norm $\|\varphi\|_r$ defined by

^{*)} This work was partially supported by the Sakkokai Foundations.