Tôhoku Math. Journ. 20(1968), 296-312.

EXCISION THEOREMS ON THE PAIR OF MAPS

HIDEO ANDO

(Received April 30, 1968)

Introduction. Let $E_f \longrightarrow X \xrightarrow{f} Y$ be an extended fibration. Then the 1-1 and onto correspondence $\mathcal{E}_{f}^{-1} : \pi_1(V, f) \to \pi(V, E_f)$ is defined easily (section 2). Moreover, let Ψ be the pair-map $(g_1, g_2) : f_1 \to f_2$ in (1.3); then the 1-1 and onto correspondence $\mathcal{E}_{\Psi}^{-1} : \pi_2(V, \Psi) \to \pi_1(V, f_{1,2})$ is defined (section 3). The object of this paper is to establish excision theorems on the pair of maps by applying \mathcal{E}_{f}^{-1} and \mathcal{E}_{Ψ}^{-1} . These excision theorems are described in section 5.

1. Preliminaries. Throughout this paper we consider the category of spaces of the homotopy type of *CW*-complexes with base points denoted by *, and all maps and homotopies are assumed to preserve base points.

PX is the space of paths in X emanating from *, and ΩX is the loop space. If $f: X \to Y$ is any map, $Y \cup_f CX$ is the space obtained by attaching to Y the reduced cone over X by means of f. X is embedded in CX by $x \to (x, 1)$, and ΣX is the reduced suspension. $X \times Y$ is the Cartesian product and $X \lor Y = X \times * \cup * \times Y$. Then the smash product X # Y is the quotient space $X \times Y/X \lor Y$.

By applying the mapping track functor, any map $f: X \to Y$ is converted into a homotopy equivalent fibre map $p: E \to Y$,

	$E_f \xrightarrow{j_f} X$	$\xrightarrow{f} Y$
(1.1)	\simeq h	comm.
	$E_{f} \xrightarrow{i} E$	$\xrightarrow{p} Y$,

where

$$E = \{(x, \eta) \in X \times Y^{1} | f(x) = \eta(1)\}, \ p(x, \eta) = \eta(0),$$

$$E_{f} = \{(x, \eta) \in X \times PY | f(x) = \eta(1)\}, \ i = \text{the inclusion map,}$$

$$j_{f}(x, \eta) = x, \ h(x) = (x, \eta_{x}) \text{ and } \eta_{x}(t) = f(x) \text{ for } t \in I,$$

$$\cong \text{ in the left diagram means homotopy commutativity.}$$