Tôhoku Math. Journ. 20(1968), 582-588.

THE OPERATIONS ρ_R^k ON THE GROUP $\widetilde{K}_R(CP^n)$

KOICHI IWATA AND HIROSHI ÔIKE

(Received June 11, 1968)

The operations ρ_c^k and ρ_R^k play significant roles in K-theory. Their definitions and the actions on the K-groups of diverse complexes are described in [2].

In this note, we calculate the action of ρ_R^k on the reduced K-rings of a complex projective space CP^n . The method used here is the same as the one which is employed by J. F. Adams in the calculation of ρ_R^k on the ring $\widetilde{K}_R(S^{4n})$ [2. (5. 18)].

Preliminaries. Let CP^n be the (complex) *n*-dimensional complex projective space and $\widetilde{K}_{\mathcal{C}}(CP^n)$ (resp. $\widetilde{K}_{\mathcal{R}}(CP^n)$) be its complex (resp. real) (reduced) *K*-rings. We write

$$c: \widetilde{K}_{R}(CP^{n}) \longrightarrow \widetilde{K}_{C}(CP^{n}),$$

 $r: \widetilde{K}_{C}(CP^{n}) \longrightarrow \widetilde{K}_{R}(CP^{n}),$
 $t: \widetilde{K}_{C}(CP^{n}) \longrightarrow \widetilde{K}_{C}(CP^{n})$

for the homomorphisms induced by complexification, realification and complex conjugation. As is well-known ([1], Lemma 3.9), we have

$$cr = 1 + t$$
,
 $rc = 2$.

The ring $\widetilde{K}_{c}(CP^{n})$ is generated by one generator μ which satisfies the relation $\mu^{n+1}=0$ ([1], Theorem 7.2). The ring $\widetilde{K}_{R}(CP^{n})$ is generated by one generator $\omega = r\mu$ which satisfies the following relations:

$$\omega^{2w+1} = 0$$
, if $n = 4w$,
 $2(\omega^{2w+1}) = 0$, $\omega^{2w+2} = 0$, if $n = 4w+1$,