Tôhoku Math. Journ. 20(1968), 554-566.

ON DUAL INTEGRAL EQUATIONS AS CONVOLUTION TRANSFORMS

Yûkichi Tanno

(Received May 9, 1968)

1. Introduction. C. Fox [1] introduced the following dual integral equations

(1)
$$\int_0^\infty H\left(ux \middle| \begin{array}{l} \alpha_i, a_i \\ \beta_i, a_i \end{array}; n\right) f(u) du = g(x), \quad 0 < x < 1,$$

and

(2)
$$\int_0^\infty H\left(ux \middle| \begin{array}{l} \lambda_i, a_i \\ \mu_i, a_i \end{array}; n\right) f(u) du = h(x), \qquad x > 1,$$

where g(x) and h(x) are given and f(x) is to be determined.

This class involves some important equations in mathematical phisics as special cases.

The H functions of order n used in equation (1) are of the form

$$H\left(x\left|\begin{array}{c}\alpha_{i},a_{i}\\\beta_{i},a_{i}\end{array}\right)=H\left(x\left|\begin{array}{c}\alpha_{1},a_{1}\\\beta_{1},a_{1}\end{array}\right]:\begin{array}{c}\alpha_{2},a_{2}\\\beta_{2},a_{2}\end{array}\right]:\cdots:\begin{array}{c}\alpha_{n},a_{n}\\\beta_{n},a_{n}\end{array}\right)$$

(4)
$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \prod_{i=1}^{n} \left\{ \frac{\Gamma(\alpha_{i} + sa_{i})}{\Gamma(\beta_{i} - sa_{i})} \right\} x^{-s} ds$$

where $a_i > 0$, α_i , β_i are all real, $i = 1, 2, \dots, n$, the contour *C* along which the integral of (4) is taken is the straight line parallel to the imaginary axis in the complex *s*-plane and all the poles of the integrand of (4) are simple and lie to the left of the line $\sigma = \sigma_0 > -\alpha_i/a_i$ $i = 1, 2, \dots, n$ $(s = \sigma + i\tau)$. The integral (4), taken along the line, converges if $2\sigma_0 \sum_{i=1}^n a_i < \sum_{i=1}^n (\beta_i - \alpha_i) = 1$.

Under the assumptions that the H function of (2) satisfies these conditions with α_i replaced by λ_i and β_i replaced by μ_i $(i = 1, 2, \dots, n)$ and a common value of σ_0 can be found for both the H functions, he found a formal solution