Tôhoku Math. Journ. 22(1970), 240-248.

SOME REMARKS ON MINIMAL SUBMANIFOLDS

KATSUEI KENMOTSU

(Received Jan. 26, 1970)

This note consists of three topics for minimal submanifolds. M denotes an n-dimensional manifold which is minimally immersed in an (n + p)-dimensional Riemannian manifold $\overline{M}^{n+p}[c]$ of constant curvature c. In the section 1 we study a linear connection $\widehat{\nabla}$ on the normal vector bundle N(M) which is naturally induced from the connection of the ambient space $\overline{M}^{n+p}[c]$. Let \widehat{R} be the curvature tensor of $\widehat{\nabla}$ and let σ be the square of the length of the second fundamental form of this immersion. Then it is proved that if M is compact, orientable and $\widehat{R} = 0$, then

$$\int_{\mathcal{H}} \sigma(\sigma - nc) dv \ge 0,$$

where dv denotes the volume element of M. It follows that if $\sigma \leq nc$ everywhere on M, then either

(1)
$$\sigma = 0$$
 (i. e., M is totally geodesic),

or

$$(2) \qquad \qquad \sigma = nc.$$

The purpose of the section 1 is to determine all minimal submanifolds in a unit sphere $S^{n+p}[1]$ satisfying $\sigma = n$ and $\hat{R} = 0$. The result can be found in Theorem 3.

In the section 2, we study a minimal hypersurface M in $S^{n+1}[1]$. R and R_1 denotes the curvature tensor and Ricci tensor of M, respectively. We will prove that if the Ricci tensor R_1 of M satisfies the condition $R(X,Y)\cdot R_1 = 0$, then, within rotations of $S^{n+1}[1]$, M is an open submanifold of one of the Clifford minimal hypersurfaces :

$$M_{k,n-k} = S^k\left(\sqrt{\frac{k}{n}}\right) \times S^{n-k}\left(\sqrt{\frac{n-k}{n}}\right), \text{ for } k = 0, 1, \cdots, \left[\frac{n}{2}\right].$$