Tôhoku Math. Journ. 22(1970), 212-219.

SOME HYPERSURFACES OF A SPHERE

SHÛKICHI TANNO AND TOSHIO TAKAHASHI

(Received Nov. 26, 1969)

1. Introduction. K.Nomizu [2] studied the effect of the condition

(*) $R(X, Y) \cdot R = 0$ for any tangent vectors X and Y

for hypersurfaces M^m of the Euclidean space E^{m+1} , where R denotes the Riemannian curvature tensor and R(X,Y) operates on the tensor algebra at each point as a derivation. P.J.Ryan [4] treated the same condition for hypersurfaces of spaces of non-zero constant curvature. On the other hand, one of the authors [6] discussed the effect of the condition

(**) $R(X, Y) \cdot R_1 = 0$ for any tangent vectors X and Y

for hypersurfaces of the Euclidean space, where R_1 denotes the Ricci curvature tensor.

The condition (*) implies the condition (**).

Recently, P.J.Ryan informed one of the authors that the conditions (*) and (**) are equivalent if the ambient space is of non-zero constant curvature.

In this note we prove

THEOREM. Let M^m , $m \ge 4$, be an m-dimensional connected and complete Riemannian manifold which is isometrically immersed in a sphere $S^{m+1}(\hat{c})$ of curvature \hat{c} . Then M^m satisfies the condition (**), if and only if M^m is one of the following spaces:

- (i) $M^m = S^m(\hat{c})$; great sphere.
- (ii) $M^m = S^m(c)$; small sphere, where $c > \tilde{c}$,
- (iii) $M^m = S^p(c_1) \times S^{m-p}(c_2)$, where $p, m-p \ge 2$ and $c_1 > \hat{c}$, $c_2 > \hat{c}$ such that $c_1^{-1} + c_2^{-1} = \hat{c}^{-1}$,