UNIQUENESS OF THE COMPLETE NORM TOPOLOGY AND CONTINUITY OF DERIVATIONS ON BANACH ALGEBRAS*

R. J. LOY

(Received August 11, 1969)

1. We are concerned with the following two propositions regarding a complex Banach algebra A:

 \mathcal{N} A has unique complete norm topology

 \mathcal{D} Derivations on A are necessarily continuous.

Note that if A does not satisfy \mathcal{N} the validity of \mathcal{D} may depend on the choice of topology, cf. the example given below.

It has been known for some time that C*-algebras satisfy \mathcal{N} [10, Corollary 4.1.18] and \mathcal{D} [11], and also that commutative semi-simple Banach algebras satisfy \mathcal{N} [10, Corollary 2.5.18]. Recently Johnson [6, Theorem 2] has shown that these latter satisfy \mathcal{D} also, so that by [12, Theorem 1] the zero map is the only derivation on such algebras. Subsuming these results Johnson [5] proved that semi-simple Banach algebras satisfy \mathcal{N} , and, in the joint paper [7], that these algebras also satisfy \mathcal{D} .

Clearly \mathcal{N} and \mathcal{D} are not true in general, since any Banach space can be made into a Banach algebra by defining all products to be zero, and in this situation any norm is an algebra norm, and any linear operator is a derivation. A less extreme example is the following. Let A be the algebra of [4, p. 771] so that $A = l^2 \oplus R$ algebraically, under a norm $\|\cdot\|$ such that l^2 is dense in A, and R is the principal ideal generated by an element r such that $r^2 = rx = 0$, $x \in l^2$. The function $x + \alpha r \mapsto \|x\|' + |\alpha|$, where $\|\cdot\|'$ is the usual l^2 norm is easily seen to be a Banach algebra norm on A, inequivalent to $\|\cdot\|$ since l^2 is $\|\cdot\|'$ -closed. Thus A does not satisfy \mathcal{N} . Now let D be a derivation on A, so that $D(x)y + xD(y) = D(xy) = D((x + \alpha r)y) = D(x)y + \alpha D(r)y + xD(y)$ for all $x, y \in l^2$, $\alpha \in C$, and so $D(r) = \mu r$ for some constant μ . Thus $D(R) \subseteq R$ and so D induces a derivation \overline{D} on the semisimple algebra A/R. It follows that \overline{D} is zero and hence that $D(A) \subseteq R$. Thus if $x, y \in l^2$, D(xy) = D(x)y + xD(y) = 0 so

^{*} This research was supported by a Post Doctoral Fellowship at Carleton University.