Tôhoku Math. Journ. 22(1970), 511-516.

REMARK ON BEHAVIOR OF SOLUTIONS OF SOME PARABOLIC EQUATIONS

LU-SAN CHEN*'

(Received October 18, 1969)

1. Consider a parabolic equation

$$Lu = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i \frac{\partial u}{\partial x_i} + cu - \frac{\partial u}{\partial t} = 0$$

in $\Omega = \mathbb{R}^n \times (0, \infty)$, where $x = (x_1, \dots, x_n)$ is a point of the *n*-dimensional Euclidean space \mathbb{R}^n , $t \in (0, \infty)$ the time-variable and $a_{ij} = a_{ji}$, b_i and c are functions defined in Ω . In this paper, we have some interests in treating behavior of the continuous solution u of the Cauchy problem

(1)
$$\begin{cases} Lu = 0 & \text{in } \Omega, \\ u(x, 0) = f(x) & \text{in } R^n. \end{cases}$$

In the case where $c \leq 0$ in Ω , some results were obtained by many authors. For instance, we can prove the following.

Suppose that coefficients of the operator L satisfy the following condition in Ω :

(2)
$$\begin{cases} 0 < \sum_{i,j=1}^{n} a_{ij}\xi_{i}\xi_{j} \leq K_{1}(|x|^{2}+1)^{1-\lambda}|\xi|^{2} \\ \text{for any real vector } \xi = (\xi_{1}, \dots, \xi_{n}) \neq 0, \\ |b_{i}| \leq K_{2}(|x|^{2}+1)^{1/2}, \quad (i = 1, \dots, n), \\ c \leq 0 \end{cases}$$

for some positive K_1, K_2 and $\lambda \in [0, \infty)$. Further, suppose that there exists a positive function H(x) in \mathbb{R}^n such that $LH \leq -\delta$ in \mathbb{R}^n for a positive constant δ and such that H(x) tends to infinity as |x| tends to infinity. If a continuous function u=u(x, t) in $\overline{\Omega} = \mathbb{R}^n \times [0, \infty)$, satisfying

^{*)}This research was supported by National Science Council.