Tôhoku Math. Journ. 22(1970), 499-501.

ON THE EXISTENCE OF NON-COMPARABLE HOMOGENEOUS TOPOLOGIES WITH THE SAME CLASS OF HOMEOMORPHISMS

YU-LEE LEE

(Received September 17, 1969; revised December 8, 1969)

Let $H(X, \mathcal{U})$ be the class of all homeomorphisms from (X, \mathcal{U}) onto itself. We have already known that, in general, there exist many topologies \mathcal{V} on Xsuch that $H(X, \mathcal{U}) = H(X, \mathcal{V})[1][2][3]$. If (X, \mathcal{U}) is an *n*-manifold, then $H(X, \mathcal{U})$ can also determine, to a certain degree, the topologies \mathcal{V} on X with $H(X, \mathcal{U}) = H(X, \mathcal{V})[4]$. However it was unknown that whether there are topologies \mathcal{U} and \mathcal{V} on a set X such that $H(X, \mathcal{U}) = H(X, \mathcal{V}), (X, \mathcal{U})$ and (X, \mathcal{V}) are homogeneous spaces and \mathcal{U} and \mathcal{V} are non-comparable in the sense that there does not exist a permutation Φ on X such that $\{\Phi(U) | U \in \mathcal{U}\} \subseteq \mathcal{V}$ or $\{\Phi(V) | V \in \mathcal{V}\}$ $\subseteq \mathcal{U}$. A negative answer would characterize a homogeneous space by means of the class of homeomorphism. The finding of this paper proves the existence of non-comparable homogeneous topological spaces with the same class of homeomorphisms. However it is still open whether there exist non-comparable compact homogeneous topologies with the same class of homeomorphisms.

THEOREM 1. Let (X, U) be an n-manifold and let $\subseteq U \in U | X \setminus U$ is compact} and let W be the topology having

 $\left\{V\setminus \bigcup_{i=1}^{\infty} \{p_i\} \mid V \in \mathcal{V} \text{ and } \{p_i\} \text{ converges to } p_0 \text{ in } (X, \mathcal{U})\right\}$

as a subbase. Then H(X, U) = H(X, W). If (X, U) is not compact, then (X, U) and (X, W) are non-comparable.

Theorem 1 is a special case of a more general theorem. Let (X, U) be a topological space, a topology \mathcal{V} on X is said to be a C-topology relative to \mathcal{U} if

(i) $H(X, \mathcal{U}) \subseteq H(X, \mathcal{CV}),$

(ii) $U \in \mathcal{U}$ if, and only if $U \cup V \in \mathcal{V}$ for every non-empty V in \mathcal{V} .

We have the following lemma. [1]