GENERALIZED CENTRAL SPHERES AND THE NOTION OF SPHERES IN RIEMANNIAN GEOMETRY

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Katsumi Nomizu

(Received November 20, 1971)

In a euclidean space E^{n+1} an *n*-plane or an *n*-sphere of radius *r* may be characterized as an umbilical hypersurface with mean curvature equal to 0 or 1/r. A similar characterization is possible for an *n*-plane or an *n*-sphere in a euclidean space E^{n+p} where p > 1, as shown by E. Cartan [1], p. 231. Indeed, it is possible to determine all umbilical submanifolds of dimension *n* in an (n + p)-dimensional space form \tilde{M} , which can be regarded as "*n*-planes" or "*n*-spheres" according to whether the mean curvature is 0 or not.

In an arbitrary Riemannian manifold \tilde{M} of dimension n + p, a natural analogue of an *n*-plane is an *n*-dimensional totally geodesic submanifold (equivalently, umbilical submanifold with zero mean curvature). In terms of a geometric notion of the development of curves, Cartan [1], p. 116, characterizes such *n*-planes in \tilde{M} as follows. Let M be an *n*-dimensional submanifold of \tilde{M} . For every point x of M and for every curve τ in Mstarting at x, the development τ^* of τ into the euclidean tangent space $T_x(\tilde{M})$ lies in the euclidean subspace $T_x(M)$ if and only if M is totally geodesic in \tilde{M} .

The purpose of the present paper is to show that a natural analogue of an *n*-sphere in an arbitrary Riemannian manifold M is an *n*-dimensional *umbilical submanifold with non-zero parallel mean curvature vector* by characterizing such a submanifold as follows: for every point x of M and for every curve τ in M starting at x, the development τ^* lies in an *n*sphere in $T_x(\tilde{M})$. The situation can be further clarified by introducing a generalization of central sphere defined in [5], which is also a generalization of the notion of osculating circle for a space curve. Namely, for an *n*-dimensional submanifold M with non-zero mean curvature in an arbitrary Riemannian manifold \tilde{M} , we associate to each point x of M a certain *n*-sphere $S^n(x)$ in $T_x(\tilde{M})$ which we call the *central n-sphere* at x. For every curve τ in M from x to y, the affine parallel displace-

Work supported by an NSF grant GP 28419.