AUTOMORPHISM GROUPS OF HOPF SURFACES

Макото Namba

(Received April 27, 1973)

Introduction. Let GL(2, C) be the group of non-singular (2×2) -matrices. An element $u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of GL(2, C) operates on C^2 as follows:

 $(z, w) \rightarrow (az + bw, cz + dw)$.

Let M be a subset of GL(2, C) defined by

$$M = \left\{ egin{pmatrix} lpha & t \ 0 \ eta \end{pmatrix} \Big| lpha, \ eta, \ t \in C, \ 0 < | \ lpha | < 1, \ 0 < | \ eta | < 1
ight\} \ .$$

Then M is a complex manifold. Let 0 be the origin of C^2 . We put $W = C^2 - 0$. Let $u \in M$. Then u defines a properly discontinuous group

$$G_u = \{u^n \mid n \in \mathbf{Z}\}$$

of automorphisms (holomorphic isomorphisms) without fixed point of W. Hence we have a complex manifold

$$V_u = W/G_u$$
.

 V_{u} is easily seen to be compact. It is called a Hopf surface. It can be shown that the collection

 $\{V_u\}_{u \in M}$

forms a complex analytic family (X, π, M) . We denote by Aut (V_u) the group of automorphisms of V_u .

The purpose of this note is prove the following theorem.

THEOREM. The disjoint union

$$A = \prod_{u \in M} \operatorname{Aut}(V_u)$$

admits a (reduced) analytic space structure such that

1) $\lambda: A \to M$ is a surjective holomorphic map, where λ is the canonical projection,

2) the map

$$A \underset{M}{\times} X \to X$$

defined by