PLURIHARMONIC BOUNDARY VALUES

ERIC BEDFORD AND PAUL FEDERBUSH

(Received June 21, 1973)

Abstract. Let $\Omega = \{\rho < 0\}$ be a domain with C^3 -boundary $\Gamma = \{\rho = 0\}$. For a large class of domains, the functions $u \in C^3(\Gamma)$ which are the restrictions of pluriharmonic functions on Ω are characterized as the solutions of a system of partial differential equations.

I. Introduction. Let $\Omega = \{\rho < 0\}$ be a bounded domain in $C^n (n \ge 2)$ with connected C^3 -boundary $\Gamma = \{\rho = 0\}$, grad $\rho \ne 0$ on Γ . A function $f \in C^1(\Gamma)$ can be extended to an analytic function F on Ω if and only if it satisfies the tangential Cauchy-Riemann equations:

(1)
$$\bar{\partial}\rho \wedge \bar{\partial}f = 0$$

on Γ (see [1], [3]). We will give an analogous system for pluriharmonic functions. It will also be pointed out that the Neumann conditions for the $\partial \bar{\partial}$ -operator give a simple characterization of pluriharmonic functions although these conditions involve derivatives normal to Γ .

Let $d = 1/2(\bar{\partial} + \partial)$ and $d^{\circ} = 1/2i(\bar{\partial} - \partial)$ denote the real and imaginary parts of $\bar{\partial}$. It will be shown here that for certain domains Ω , a function $u \in C^{\mathfrak{s}}(\Gamma)$ can be extended to a pluriharmonic function U on Ω if and only if there exists a function $\alpha \in C^{\mathfrak{s}}(\Gamma)$ such that:

$$(2) d\rho \wedge d^{\circ}\rho \wedge dd^{\circ}u = \alpha d\rho \wedge d^{\circ}\rho \wedge dd^{\circ}\rho$$

$$(3) d\rho \wedge dd^{c}u = d\rho \wedge d\alpha \wedge d^{c}\rho + \alpha d\rho \wedge dd^{c}\rho.$$

Since the expression $dd^{\circ}u$ does not depend only on the values of u on Γ , the equations (2) and (3) are to be interpreted in the following sense. A C^3 extension u_1 of u to a neighborhood of Γ is picked, and the same extension u_1 is substituted into both equations (2) and (3).

If u extends to a pluriharmonic function U on Ω , then (2) and (3) are satisfied. For any extension u_1 will have the form $u_1 = U + a\rho$, and equation (2) will yield $a = \alpha$ since $dd^{\circ}U = 0$. With $a = \alpha$, equation (3)

AMS 1970 Subject Classifications: Primary 32D15, 35N15

Key Words and Phrases: Dirichlet problem, pluriharmonic functions, tangential Cauchy-Riemann equations.