Tôhoku Math. Journ. 27 (1975), 49-56.

ON THE TANGENT SPHERE BUNDLE OF A 2-SPHERE

WILHELM KLINGENBERG AND SHIGEO SASAKI¹⁾

(Received October 19, 1973)

Introduction. Let S^2 be the unit sphere in a Euclidean space E^3 with the induced metric g. Then, the set of all unit tangent vectors $T_1(S^2)$ with the natural topology is the total space of the tangent sphere bundle $p: T_1(S^2) \rightarrow S^2$. $T_1(S^2)$ has a natural Riemannian metric. In this paper, we prove first that $T_1(S^2)$ with this metric is isometric with the elliptic space of constant curvature 1/4 (Theorem 1). Then, we give two proofs of a theorem which characterizes each geodesic on $T_1(S^2)$ as a vector field along a circle in S^2 (Theorem 2 and §4). Finally, we give a theorem on the set of tangent vectors of a one parameter family of circles, the set corresponds to a Clifford surface in $T_1(S^2)$ regarded as an elliptic space (Theorem 4).

1. $T_1(S^2)$ as a Riemannian manifold. First we shall show

LEMMA 1. $T_1(S^2)$ is diffeomorphic with the real projective space P^3 .

PROOF. For $y \in T_1(S^2)$, we consider the unit vector $e_1(y)$ which issues from the center O of S^2 and ends at the point p(y). Then, the map $\psi: T_1(S^2) \to SO(3)$ defined by $y \to (e_1(y), e_2(y), e_1(y) \times e_2(y))$, where $e_2(y) \equiv y$ and \times means vector product in E^3 , is a diffeomorphism. On the other hand, it is well known that SO(3) is diffeomorphic with P^3 (cf. for example [3] p. 115). Hence, $T_1(S^2)$ is diffeomorphic with P^3 .

Now, let U be an arbitrary coordinate neighborhood with local coordinates $x^{a}(a, b, c = 1, 2)$ and y^{a} be components of a tangent vector y in U with respect to the natural frame $\partial/\partial x^{a}$. Then, $p^{-1}(U)$ gives a coordinate neighborhood of $T_{1}(S^{2})$ with local coordinates (x^{a}, y^{a}) . By virtue of the induced metric g on S^{2} in E^{3} , the natural Riemannian metric \hat{g} on $T_{1}(S^{2})$ is given by the following line element:

$$(1.1) d\sigma^{2} = g_{bc}(x)dx^{b}dx^{c} + g_{bc}(x)\delta y^{b}\delta y^{c},$$

([2]) where we have put

¹⁾ This research was done when the first author visited Japan in 1973 by the support of the Japan Society for the Promotion of Science.