Tόhoku Math. Journ. 27 (1975), 49-56.

ON THE TANGENT SPHERE BUNDLE OF A 2-SPHERE

WILHELM KLINGENBERG AND SHIGEO SASAKI¹⁾

(Received October 19, 1973)

Introduction. Let S^2 be the unit sphere in a Euclidean space E^3 with the induced metric g . Then, the set of all unit tangent vectors $T_1(S^2)$ with the natural topology is the total space of the tangent sphere bundle $p: T_1(S^2) \to S^2$. $T_1(S^2)$ has a natural Riemannian metric. In this paper, we prove first that $T_1(S^2)$ with this metric is isometric with the elliptic space of constant curvature 1/4 (Theorem 1). Then, we give two proofs of a theorem which characterizes each geodesic on $T_1(S^2)$ as a vector field along a circle in *S²* (Theorem 2 and §4). Finally, we give a theorem on the set of tangent vectors of a one parameter family of circles, the set corresponds to a Clifford surface in $T₁(S²)$ regarded as an elliptic space (Theorem 4).

1. $T_1(S^2)$ as a Riemannian manifold. First we shall show

LEMMA 1.) *is diffeomorphic with the real projective space* P³ .

PROOF. For $y \in T_1(S^2)$, we consider the unit vector $e_1(y)$ which issues from the center O of S^2 and ends at the point $p(y)$. Then, the map $f(x) \rightarrow \text{SO}(3)$ defined by $y \rightarrow (e_1(y), e_2(y), e_1(y) \times e_2(y))$, where $e_2(y) \equiv y$ and \times means vector product in E^3 , is a diffeomorphism. On the other hand, it is well known that $SO(3)$ is diffeomorphic with $P³$ (cf. for ex ample [3] p. 115). Hence, $T_1(S^2)$ is diffeomorphic with P^3 .

Now, let *U* be an arbitrary coordinate neighborhood with local coordi nates x^a (*a*, *b*, *c* = 1, 2) and y^a be components of a tangent vector *y* in *U* with respect to the natural frame $\partial/\partial x^a$. Then, $p^{-1}(U)$ gives a coordinate neighborhood of $T_1(S^2)$ with local coordinates (x^a, y^a) . By virtue of the induced metric g on S^2 in E^3 , the natural Riemannian metric \hat{g} on $T_1(S^2)$ is given by the following line element:

(1.1)
$$
d\sigma^2 = g_{\iota\iota}(x)dx^{\iota}dx^{\iota} + g_{\iota\iota}(x)\delta y^{\iota}\delta y^{\iota},
$$

([2]) where we have put

(1.2)
$$
g_{\nu\sigma}(x)y^{\nu}y^{\sigma}=1, \qquad \delta y^{\nu}=dy^{\nu}+\begin{Bmatrix}b\\ef\end{Bmatrix}y^{\sigma}dx^{\sigma}.
$$

¹⁵ This research was done when the first author visited Japan in 1973 by the support of the Japan Society for the Promotion of Science.