Tόhoku Math. Journ. 28(1976), 469-477.

HOMOGENEOUS RIEMANNIAN MANIFOLDS $\mathbf{COVERED}$ BY $S^m \times S^n$

HITOSHI TAKAGI

(Received October 23, 1975)

1. Introduction. The purpose of the present paper is to classify the homogeneous Riemannian manifolds covered by a product of two ordinary spheres with standard metrics. This classification reduces to classify the finite subgroups of the direct product group $Q' \times Q'$, where *Q'* is the multicative group of unit quaternions.

For this purpose, we shall use the classification of the homogeneous Riemannian manifolds of positive constant curvature by J. A. Wolf (cf. [3]) and refer to the author's papers [1] and [2].

2. Clifford translations of $S^m \times S^n$. Let $S^m(K)$ $(m \geq 2)$ denote an m-dimensional sphere of radius $K^{-1/2}$ in an $(m + 1)$ -dimensional Euclidean space. $S^m(K)$ is viewed as a set of vectors of norm $K^{-1/2}$ in a Euclidean vector space R^{m+1} . Then the group $O(m + 1)$ of all linear isometries of R^{m+1} is considered as the group of all isometries of $S^m(K)$. The Riemannian product of $S^m(K)$ and $S^n(K')$ $(m, n \ge 2)$ is given by $S^{\ast}(K) \times S^{\ast}(K') = \{ (x,\,y) \in R^{\,m+1} \times R^{\,n+1} = R^{\,m+n+2}; \, \| \, x \, \| = K^{-1/2}, \, \| \, y \, \| = (K')^{-1/2} \}.$ Then the direct product $O(m + 1) \times O(n + 1)$ is a group of isometries of $S^m(K) \times S^n(K')$, which is considered as a subgroup of $O(m + n + 2)$. On the other hand, the linear isometry *s* of $R^{m+1} \times R^{m+1}$ defined by $s(x, y) = (y, x)$ is considered as an isometry of $S^m(K) \times S^m(K)$. $(O(m + 1) \times S^m(K))$ $O(m + 1) \cup (O(m + 1) \times O(m + 1))$ s or $O(m + 1) \times O(n + 1)$ is the group of all isometries of $S^m(K) \times S^n(K)$, according as $S^m(K)$ and $S^n(K')$ are isometric or not (cf. p. 243 [3]).

Let *Q* and Q' denote the algebra of real quaternions and the multica tive group of unit quaternions respectively. That is, $Q' = \{a = a_1 +$ $a_2i + a_3j + a_4k; i^2 = j^2 = k^2 = -1, \, ij = -ji = k, \, jk = -kj = i, \, ki = -ik = j,$ $a_t \in \mathbb{R}$ $(t = 1, 2, 3, 4), \sum_{t=1}^4 a_t^2 = 1$. Then, **Q'** contains $C' = \{a = a_1 + a_2 i;$ $a_{1}, a_{2} \in \mathbb{R}, a_{1}^{2} + a_{2}^{2} = 1$ } as a subgroup. C' contains $\mathbb{Z}_{2} = \{\pm 1\}$ as a subgroup. By certain representations, Q' , C' and $Z₂$ are considered as closed sub groups $O(4l)$, $O(2l)$ and $O(l)$ $(l = 1, 2, \cdots)$ respectively (cf. [1], [2]). Then, Q' , C' and Z_2 are considered as groups of isometries of S^{4l-1} , S^{2l-1} and S^{l-1} respectively.