ALMOST CONTACT STRUCTURES ON BRIESKORN MANIFOLDS

SHIGEO SASAKI AND TOSHIO TAKAHASHI

(Received November 13, 1975)

1. Introduction. Let a_0, a_1, \dots, a_n be positive integers and let $X^{2n} = X^{2n}(a_0, a_1, \dots, a_n)$ be the algebraic variety given by $X^{2n}(a_0, a_1, \dots, a_n) = \{z = (z_0, z_1, \dots, z_n) \in C^{n+1} | z_0^{a_0} + z_1^{a_1} + \dots + z_n^{a_n} = 0\}$. The only possible singularity of X^{2n} is the origin 0 of C^{n+1} , and $B^{2n} = B^{2n}(a_0, a_1, \dots, a_n) = X^{2n}(a_0, a_1, \dots, a_n) - \{0\}$ is a complex hypersurface of C^{n+1} . Let $\Sigma^{2n-1} = \Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ be the intersection of B^{2n} and the unit sphere $S^{2n+1} = \{z \in C^{n+1} | z_0 \overline{z}_0 + z_1 \overline{z}_1 + \dots + z_n \overline{z}_n = 1\}$, which we call a Brieskorn manifold.

A Brieskorn manifold Σ^{2n-1} is a real hypersurface of the complex manifold B^{2n} , and it is also a submanifold of the unit sphere S^{2n+1} with codimension 2. K. Abe [1] introduced an almost contact structure on Σ^{2n-1} by using a property that $\Sigma^{2n-1} \times R$ is diffeomorphic with B^{2n} , and discussed about the non-regularity of the almost contact structure. On the other hand, C. J. Hsu and one of the authors [6] introduced a contact structure on Σ^{2n-1} by using a property that Σ^{2n-1} is a submanifold of B^{2n} and S^{2n+1} , and gave a necessary and sufficient condition that the almost contact structure given by K. Abe and the almost contact structure given in [6] coincide. K. Abe and J. Erbacher [2] also introduced contact structures on a wide class of submanifolds which contain Brieskorn manifolds as a special case.

In this note, first we give a simplified definition of the almost contact structure introduced by K. Abe, and the criterions for its non-regularity and regularity. Secondly we show that our almost contact structure is normal.

2. Definition of an almost contact structure for Brieskorn manifold Σ^{2n-1} . Let $\{f_s\}(s \in R)$ be the 1-parameter group of holomorphic transformations of the complex manifold B^{2n} given by

$$(2.1) f_s(z_0, z_1, \cdots, z_n) = (e^{b_0 s} z_0, e^{b_1 s} z_1, \cdots, e^{b_n s} z_n),$$

where $b_0 = m/a_0$, $b_1 = m/a_1$, \cdots , $b_n = m/a_n$ and m is the L.C.M. of a_0 , a_1 , \cdots , a_n . Let a be the vector field on B^{2n} which is induced by the 1-parameter group $\{f_s\}(s \in R)$. It is easy to see that a is transversal and Ja is tangent to the Brieskorn manifold Σ^{2n-1} , where J is the induced complex structure