Tôhoku Math. Journ. 28 (1976), 583-590.

COMMUTATIVE NORMAL *-DERIVATIONS III*,**)

Shôichirô Sakai

(Received July 14, 1975)

1. Introduction. In the present paper, we shall continue the study of commutative derivations. We shall show general methods to obtain all KMS-states. Also we shall generalize the theorem in [6] to commutative derivations with infinite range interaction, and we shall examine the relation between this theorem and Dyson conjecture [1] and Kac-Thompson conjecture [1] concerning one-dimensional Ising ferromagnet.

2. Theorems. Let \mathfrak{A} be a uniformly hyperfinite C^* -algebra, and let δ be a normal *-derivation in \mathfrak{A} -i.e., there is an increasing sequence of finite type I subfactors $\{\mathfrak{A}_n\}$ in \mathfrak{A} such that $\bigcup_{n=1}^{\infty} \mathfrak{A}_n$ is dense in \mathfrak{A} and the domain $\mathfrak{D}(\delta)$ of δ is $\bigcup_{n=1}^{\infty} \mathfrak{A}_n$. Then there is a sequence of selfadjoint elements $\{h_n\}$ in \mathfrak{A} such that $\delta(a) = i[h_n, a]$ $(a \in \mathfrak{A}_n)$ $(n = 1, 2, \cdots)$. Suppose that δ is commutative -i.e., we can choose (h_n) as a commutative family.

Let \mathfrak{L}_n be the C^* -subalgebra of \mathfrak{A} generated by \mathfrak{A}_n and h_n . Suppose that $h_n \in \bigcup_{m=1}^{\infty} \mathfrak{A}_m (n = 1, 2, \cdots)$; then \mathfrak{L}_n is finitedimensional. Let $(p_{n,j})_{j=1}^{m(n)}$ be the family of all minimal projections in the center \mathbb{Z}_n of \mathfrak{L}_n . Then $\mathfrak{L}_n = \sum_{j=1}^{m(n)} \mathfrak{L}_n p_{n,j}$. Let $\{\rho(t)\}$ be the strongly continuous one-parameter subgroup of *-automorphisms on \mathfrak{A} corresponding to δ (cf. [5]). Then $\rho(t)(a) = e^{+tih_n} a e^{-tih_n} (a \in \mathfrak{L}_n)$ and so $\rho(t)\mathfrak{L}_n p_{n,j} = \mathfrak{L}_n p_{n,j}$.

Now we shall show the following theorem.

THEOREM 1. Suppose $h_n \in \bigcup_{m=1}^{\infty} \mathfrak{A}_m (n = 1, 2, \cdots)$ and let $\psi_{n,j,\beta}(x) = \tau(xe^{-\beta h_n}p_{n,j})/\tau(e^{-\beta h_n}p_{n,j})$ ($x \in \mathfrak{A}$), where $-\infty < \beta < +\infty$ and τ is the unique tracial state on \mathfrak{A} . Let

$$G_{\beta} = \{\psi_{n,j,\beta} \mid 1 \leq j \leq m(n) \text{ and } n = 1, 2, 3, \cdots \}.$$

Then the set of all accumulation points in the $\sigma(\mathfrak{A}^*, \mathfrak{A})$ -closure \overline{G}_{β} of G_{β} in the state space of \mathfrak{A} contains all extreme KMS states on \mathfrak{A} for $\{\rho(t)\}$ at β . Moreover every accumulation point of \overline{G}_{β} in the $\sigma(\mathfrak{A}^*, \mathfrak{A})$ -topology is a KMS state for $\{\rho(t)\}$ at β , where \mathfrak{A}^* is the dual Banach space of \mathfrak{A} .

^{*)} This research is supported by National Science Foundation.

^{**)} The content of this paper was announced in the international conference of K theory and operator algebras at University of Georgia on April 19, 1975.