Tôhoku Math. Journ. 28 (1976), 563-581.

ON THE ABSOLUTE NÖRLUND SUMMABILITY FACTORS OF THE CONJUGATE SERIES OF A FOURIER SERIES

Yasuo Okuyama

(Received June 7, 1975)

1. Let $\{s_n\}$ denote the *n*-th partial sum of a given infinite series $\sum a_n$. Let $\{p_n\}$ be a sequence of constants, real or complex, and let

$$P_n = p_0 + p_1 + \cdots + p_n$$
; $P_{-k} = p_{-k} = 0$, for $k \ge 1$.

The sequence $\{t_n\}$, given by

(1.1)
$$t_n = \frac{1}{P_n} \sum_{k=0}^n p_{n-k} s_k = \frac{1}{P_n} \sum_{k=0}^n P_{n-k} a_k , \quad (P_n \neq 0) ,$$

defines the Nörlund means of the sequence $\{s_n\}$ generated by the sequence $\{p_n\}$.

Then, the series $\sum a_n$ is said to be summable $|N, p_n|$, if the sequence $\{t_n\}$ is of bounded variation, that is, the series

(1.2)
$$\sum_{n} |t_n - t_{n-1}|$$

is convergent.

In the special cases in which $p_n = \Gamma(n + \alpha)/\Gamma(\alpha)\Gamma(n + 1)$, $\alpha > 0$, and $p_n = 1/(n + 1)$, summability $|N, p_n|$ are the same as the summability $|C, \alpha|$ and the absolute harmonic summability, respectively.

Let f(t) be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. We assume without any loss of generality that the Fourier series of f(t) is given by

(1.3)
$$\sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t)$$

and $\int_{-\pi}^{\pi} f(t) dt = 0.$

The series "conjugate" to (1.3) is

$$\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{n=1}^{\infty} B_n(t)$$
.

We write