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1. Introduction. As in homology theory, the notion of injectivity
was introduced in the category whose objects are Banach spaces and
whose morphisms are contractive (i.e., of norm ^ 1) linear maps, and the
existence and uniqueness of the injective envelope of a Banach space
was proved by H. B. Cohen [1] (cf. also [6]).

In the present paper we show that the corresponding statements are
valid in the category whose objects are Banach modules over a Banach
algebra and whose morphisms are contractive module homomorphisms,
and that a flow (i.e., a compact Hausdorff space with a discrete group
acting on it as onto homeomorphisms) has a projective cover. The latter,
which seems to be, in a certain sense, a natural generalization of a result
of A. M. Gleason [3; Theorem 3.2] (cf. 1° and Lemma 5 (i), (ii) below),
is used to give a characterization of injective Banach modules over a
discrete group algebra (Theorem 2 below). In the last section we are
concerned with self-injective C*-algebras (i.e., C*-algebras which, con-
sidered as Banach modules over themselves, are injective).

Let A be a fixed Banach algebra with unit 1. We shall always as-
sume that ||11| = 1. A unital left A-module X is called a left Banach
A-module if its underlying vector space is a Banach space with the
norm satisfying the condition:

||α α?|| ^ | |α | | | |g| | for aeA and xeX.

Similarly a right or two-sided Banach A-module is defined. But through-
out this paper we shall exclusively treat left Banach A-modules unless
otherwise specified, and abbreviate them to Banach A-modules. The
letter X will denote a fixed but arbitrary Banach A-module.

DEFINITIONS. An extension of X is a pair (F, K) of a Banach A-
module Y and an isometric module homomorphism tc:X-+ Y. A Banach
A-module X is injective if for each Banach A-module Y and each exten-
sion (Z, it) of Y, any continuous module homomorphism a: Y—>X extends
to a continuous module homomorphism ά: Z —*X, i.e., άoκ = a, with
| | α | | = | | α | | . An extension (Y, tc) of X is injective if Y is an injective


