ON INTERTWINING DILATIONS. IV

GRIGORE ARSENE AND ZOIA CEAUȘESCU

(Received March 8, 1977, revised September 27, 1977)

Abstract. We give a generalization of the theorems of the existence (see [9]) and the uniqueness (see [3]) of the contractive intertwining dilations in the presence of some representations of a C^* -algebra.

1. Let H_j (j=1,2) be some (complex) Hilbert spaces and let $\mathscr{L}(H_1,H_2)$ denote the set of all (linear bounded) operators from H_1 into H_2 . For a Hilbert space H, $\mathscr{L}(H)$ will stand for $\mathscr{L}(H,H)$. If $T \in \mathscr{L}(H_1,H_2)$ is a contraction, then we denote $D_T = (I-T^*T)^{1/2}$ and $\mathscr{D}_T = D_T(H_1)^-$. For a contraction $T \in \mathscr{L}(H)$, $U \in \mathscr{L}(K)$ will be the minimal isometric dilation of T; in other words:

$$K = H \oplus \mathscr{D}_T \oplus \mathscr{D}_T \oplus \cdots$$

and

$$U = egin{pmatrix} T & 0 & 0 & \cdots \ D_T & 0 & 0 & \cdots \ 0 & I & 0 & \cdots \ 0 & 0 & I & \cdots \ dots & dots & dots & dots \end{pmatrix}$$

(For this and for any fact connected with the geometry of isometric dilations of contractions see [9], ch. I and II).

If $T_j \in \mathcal{L}(H_j)$ (j=1,2) are two contractions, $I(T_1,T_2)$ will be the set of all operators $A \in \mathcal{L}(H_2,H_1)$ such that $T_1A=AT_2$. Let $U_j \in \mathcal{L}(K_j)$ be the minimal isometric dilation of T_j and P_j the (orthogonal) projection of K_j onto H_j (j=1,2). For a contraction $A \in I(T_1,T_2)$, a contractive intertwining dilation $((T_1,T_2)\text{-CID})$ of A will be a contraction $B \in I(U_1,U_2)$, such that $P_1B=AP_2$.

The existence of a (T_1, T_2) -CID for every contraction of $I(T_1, T_2)$ was proved by B. Sz.-Nagy and C. Foiaș in 1968 (see [9], ch. II, th. 2.3); recently T. Ando, Z. Ceaușescu and C. Foiaș proved in [3] that the uniqueness of the (T_1, T_2) -CID is equivalent to the fact that one of the factorizations $T_1 \cdot A$ or $A \cdot T_2$ be regular (in the sense of [9], ch. VII, §3). A generalization of this criterion is used in [6] for the uniqueness problem