Tôhoku Math. Journ. 32 (1980), 337-351.

THE VIRTUAL SINGULARITY THEOREM AND THE LOGARITHMIC BIGENUS THEOREM

SHIGERU IITAKA

(Received October 28, 1978, revised October 6, 1979)

Introduction. When we study non-singular algebraic varieties V defined over C the field of complex numbers, it is very important to know the logarithmic Kodaira dimension $\bar{\kappa}(V)$ of them V. In order to compute $\bar{\kappa}(V)$ of a non-singular algebraic variety V, we have to find a complete non-singular algebraic variety \bar{V}^* and a divisor D^* with normal crossings on \bar{V}^* , such that $V = \bar{V}^* - D^*$. Then by definition, $\bar{\kappa}(V) =$ $\kappa(K(\bar{V}^*) + D^*, \bar{V}^*)$. Here $\kappa(X, \bar{V})$ denotes the X-dimension of \bar{V} (see [1]).

Occasionally, V is given as a complement of a reduced divisor D on a complete non-singular algebraic variety \overline{V} . In practice, it is very laborious to transform D into D^* with normal crossings by a finite succession of blowing ups with non-singular centers. However, in general,

$$\bar{\kappa}(V) \leq \kappa(K(\bar{V}) + D, \bar{V})$$
.

In many examples, we observe that the equality above holds actually. In such a case, we say that the virtual singularity theorem holds for the pair (\bar{V}, D) . For example, when D has only normal crossings, the virtual singularity theorem holds by definition. If $\kappa(\bar{V}) \geq 0$, the virtual singularity theorem holds with any effective divisor D. In this case, however, the strong virtual singularity theorem will be proved in Theorem 1. Moreover, even if \bar{V} is a non-singular non-rational ruled surface, we can prove the virtual singularity theorem for (\bar{V}, D) in Theorem 2.

On the other hand, when \overline{V} is a rational surface (which is always assumed to be non-singular), the virtual singularity theorem does not hold in general. But even in this case, if D has very bad singularities, we have the virtual singularity theorem (Theorem 4). This is a generalization of a theorem of Wakabayashi [10].

THEOREM (Wakabayashi). Let C be an irreducible curve of degree d in P^2 .

(1) If C is not rational and $d \ge 4$, or

(2) if C is a rational curve which has at least two singular