Tôhoku Math. Journ. 33 (1981), 227-247.

HOLOMORPHIC FAMILIES OF RIEMANN SURFACES AND TEICHMÜLLER SPACES III

Bimeromorphic embedding of algebraic surfaces into projective spaces by automorphic forms

Yoichi Imayoshi

(Received December 12, 1979)

Introduction. In this paper, as an application of the results in [4] and [5], we will deal with the bimeromorphic embedding of algebraic surfaces into projective spaces by automorphic forms.

Let X be a two-dimensional, irreducible, non-singular projective algebraic variety over C. There exist a non-empty Zariski open subset \mathscr{S} of X, a Riemann surface R of finite type and a holomorphic mapping $\pi: \mathscr{S} \to R$ so that the triple (\mathscr{S}, π, R) is a holomorphic family of Riemann surfaces of type (g, n) with 2g - 2 + n > 0. We may assume that the universal covering space of R is the unit disc. Then the universal covering space $\widetilde{\mathscr{D}}$ of \mathscr{S} is a bounded Bergman domain in C^2 . Let $\widetilde{\mathscr{S}}$ be the covering transformation group of the universal covering $\widetilde{\Pi}: \widetilde{\mathscr{D}} \to \mathscr{S}$. A holomorphic function f is called an automorphic form of weight q on $\widetilde{\mathscr{D}}$ for $\widetilde{\mathscr{S}}$, if

$$f(T(x)) = f(x)[J_T(x)]^{-q}$$

for all $T \in \widetilde{\mathscr{G}}$ and $x \in \widetilde{\mathscr{D}}$, where q is an integer and $J_T(x)$ is the Jacobian of T at x. We also say that f is a q-form for $\widetilde{\mathscr{G}}$. We assume $q \ge 2$ throughout this paper.

Our problem is stated as follows: Can we construct many automorphic q-forms f_0, \dots, f_N for $\widetilde{\mathscr{G}}$ in such a way that $F = (f_0, \dots, f_N)$ induces a bimeromorphic embedding of X into the N-dimensional complex projective space $P_N(C)$? This problem is solved affirmatively in §8.

At the beginning, in §1, we recall the main results in [4] and [5]. In §2, we construct a domain \mathscr{D} and a discrete subgroup \mathscr{G} of the analytic automorphism group of \mathscr{D} so that our problem for $\widetilde{\mathscr{D}}$ and $\widetilde{\mathscr{G}}$ can be reduced to that for \mathscr{D} and \mathscr{G} . §3 is devoted to constructing some auxiliary domains, which will be used in §7. In §4, we define the behaviour of automorphic forms for \mathscr{G} near boundary points and, in §5, we recall some well-known results on the Poincaré metric and the