Tôhoku Math. Journ. 34 (1982), 133-139.

ESTIMATES FOR THE ASYMPTOTIC ORDER OF A GRÖTZSCH RING CONSTANT

GLEN D. ANDERSON AND MAVINA K. VAMANAMURTHY

(Received June 9, 1981)

Abstract. Asymptotic approximations in terms of n are obtained for the constant $\log \lambda_n = \lim_{a \to 0} \pmod{R_{G,n}(a)} + \log a$ associated with the Grötzsch extremal ring $R_{G,n}$ in euclidean *n*-space, $n \ge 3$.

1. Definitions and notation. By a ring R is meant a domain in finite euclidean *n*-space whose complement consists of two components C_0 and C_1 , where C_0 is bounded. The conformal capacity of R (cf. [11]) is

$$\operatorname{cap} R = \inf_{arphi} \int_{R} | arphi arphi |^{\scriptscriptstyle n} d \omega$$
 ,

where \mathcal{V} denotes the gradient, and where the infimum is taken over all real-valued C^1 functions φ in R with boundary values 0 on ∂C_0 and 1 on ∂C_1 . Then the *modulus* of the ring R is defined by

$$\operatorname{mod} R = (\sigma_{n-1} / \operatorname{cap} R)^{1/(n-1)}$$
 ,

where for each positive integer p we let σ_p denote the p-dimensional measure of the unit sphere

$$S^p = \left\{ (x_1, \ \cdots, \ x_{p+1}) \colon \sum_{j=1}^{p+1} x_j^2 = 1
ight\} \; .$$

Then

(1)
$$\sigma_p = 2\pi^{(p+1)/2} \Gamma((p+1)/2)^{-1}$$

(cf. [9], [12]), where Γ denotes the classical Gamma function. For later reference we recall that

$$(2) \qquad \qquad \int_0^{\pi/2} \cos^p u \, du = \sigma_{p+1}/2\sigma_p$$

for each positive integer p (cf. [2]).

For $n \ge 2$ and 0 < a < 1 we let $R_{G,n} = R_{G,n}(a)$ denote the *n*-dimensional Grötzsch ring, that is, the ring whose complementary components are

$$C_{\scriptscriptstyle 0}=\{(x_{\scriptscriptstyle 1},\,\cdots,\,x_{\scriptscriptstyle n})\colon 0\leq x_{\scriptscriptstyle 1}\leq a,\,x_{\scriptscriptstyle j}=0,\,2\leq j\leq n\}$$

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30 C 60. Secondary 41 A 60.