ON EXTREMAL QUASICONFORMAL MAPPINGS COMPATIBLE WITH A FUCHSIAN GROUP

KEN-ICHI SAKAN

(Received April 13, 1981)

1. Introduction. Let U be the upper half-plane and let $\hat{R} = R \cup \{\infty\}$ be the extended real line. We denote by PSL(2, R) the real Möbius group, that is, the group of all the conformal automorphisms of U. A discrete subgroup G of PSL(2, R) is called a Fuchsian group. The limit set $\Lambda(G)$ of a Fuchsian group G is the derived set of the set which consists of all the images $\gamma(i)$ of the point z = i under $\gamma \in G$. We say that a Fuchsian group G is non-elementary whenever $\Lambda(G)$ contains more than two points. A Fuchsian group G is said to be of the first kind if $\Lambda(G) = \hat{R}$; G is said to be of the second kind if $\Lambda(G) \neq \hat{R}$. It is well-known that, if G is a non-elementary Fuchsian group of the second kind, then $\Lambda(G)$ is a nowhere dense perfect subset of \hat{R} , which is invariant under G.

Let G be a Fuchsian group and let σ be a closed subset of \hat{R} , which is invariant under G and which contains at least three points. We define $\Sigma(G)$ as the family which consists of all such σ . As is known, every σ in $\Sigma(G)$ contains $\Lambda(G)$. Let f be a quasiconformal automorphism of U, which is compatible with G: that is, $fGf^{-1} \subset PSL(2, \mathbb{R})$. All such f form a family F(G). It is known that every f in F(G) is extensible to a homeomorphism of $U \cup \hat{R}$, which is also denoted by the same letter f. For $f \in F(G)$ and $\sigma \in \Sigma(G)$, we define $F(G, f, \sigma)$ as the set of all the $g \in F(G)$ satisfying $g|_{\sigma} = f|_{\sigma}$, where $g|_{\sigma}$ means the restriction of g to σ . We put

(1.1)
$$k(G, f, \sigma) = \inf \|\mu_g\|,$$

where $\|\mu_g\|$ means the L_{∞} norm of the Beltrami coefficient $\mu_g = g_{\bar{z}}/g_z$ of gand the infimum is taken over all $g \in F(G, f, \sigma)$. By means of a normal family argument of quasiconformal mappings, we can check that there exists some $g \in F(G, f, \sigma)$ with $\|\mu_g\| = k(G, f, \sigma)$ (see [6]). Such a mapping g is said to be extremal in the class $F(G, f, \sigma)$.

Let Γ be a subgroup of a Fuchsian group G. By definition, it is obvious that $\Sigma(G) \subset \Sigma(\Gamma)$, $F(G) \subset F(\Gamma)$ and that $F(G, f, \sigma) \subset F(\Gamma, f, \sigma)$ for every $f \in F(G)$ and every $\sigma \in \Sigma(G)$. Thus, by (1.1), clearly we have

(1.2)
$$k(G, f, \sigma) \ge k(\Gamma, f, \sigma)$$