EXTENSIONS OF DERIVATIONS AND AUTOMORPHISMS FROM C*-ALGEBRAS TO THEIR INJECTIVE ENVELOPES

MASAMICHI HAMANA, TAKATERU OKAYASU AND KAZUYUKI SAITÔ

(Received April 13, 1981)

1. Introduction and preliminaries. Quite recently, the first author showed that any unital C^* -algebra A has a unique injective envelope I(A) which indeed is an AW^* -algebra and contains the regular monotone completion \overline{A} of A as an AW^* -subalgebra. The injective envelope I(A)(resp. the regular monotone completion \overline{A}) reflects closely the structure of A; e.g., any *-automorphism of A is extended to a unique *-automorphism of I(A) (resp. \overline{A}) ([6]).

 AW^* -algebras are more tractable than the general C^* -algebras. They have sufficiently many projections and are decomposed uniquely according to type. Moreover it is known that their derivations are inner ([10]).

On the other hand, I(A) is an AW^* -factor if and only if A is prime, and in most cases I(A) becomes a non- W^* , AW^* -algebra. To such an algebra the spatial theory of W^* -algebras cannot be applicable and to study it seems to be very interesting.

In this paper we shall consider the following questions: Whether can each derivation on a C^* -algebra be extended to a unique derivation on its injective envelope and whether can each automorphism (not necessarily *-preserving) of a C^* -algebra be extended to a unique automorphism of its injective envelope? The answers should be given affirmatively to both questions for a general C^* -algebra. As an application of the observation on derivations, we shall be able to introduce, for the general C^* -algebra A, the C^* -algebra D(A), as a C^* -subalgebra of the regular monotone completion \overline{A} of A (note that, if A is separable then \overline{A} coincides with the regular σ -competion \widehat{A} of A [18] and hence D(A)is a C^* -subalgebra of \widehat{A}). This C^* -algebra D(A) must coincide with Sakai's derived algebra $\mathscr{D}(A)$ ([14]) if A is factorial (see also Tomiyama [17]).

This work was done in a seminar at Research Institute for Mathematical Sciences, Kyoto University (R.I.M.S.). The authors would like to thank R.I.M.S. for financial support for the seminar.