NONSELFADJOINT SUBALGEBRAS ASSOCIATED WITH COMPACT ABELIAN GROUP ACTIONS ON FINITE VON NEUMANN ALGEBRAS

KICHI-SUKE SAITO

(Received May 11, 1981)

1. Introduction. Let G be a compact abelian group whose dual Γ has a total order. Suppose that M is a von Neumann algebra with a faithful normal tracial state τ and $\{\alpha_g\}_{g\in G}$ is a σ -weakly continuous representation of G as *-automorphisms of M such that $\tau \circ \alpha_g = \tau$, $g \in G$. Put $\Gamma_+ = \{\gamma \in \Gamma : \gamma \geq 0\}$ and let $H^{\infty}(\alpha)$ be the set of $x \in M$ such that $Sp_{\alpha}(x) \subset \Gamma_+$. Recently, the structure of $H^{\infty}(\alpha)$ has been investigated by several authors (cf. [7], [8], [9], [10], [12], [13], [15]). It is well-known that $H^{\infty}(\alpha)$ is a finite maximal subdiagonal algebra of M (cf. [8]). However, $H^{\infty}(\alpha)$ is not necessarily maximal as a σ -weakly closed subalgebra of M. McAsey, Muhly and the author in [9], [10] and [15] studied the maximality of typical examples of $H^{\infty}(\alpha)$ which are called nonselfadjoint crossed products.

Our aim in this paper is to investigate the maximality of $H^{\infty}(\alpha)$ as a σ -weakly closed subalgebra of M. Our method is based on a characterization of spectral subspaces and the invariant subspace structure of the noncommutative Lebesgue space $L^2(M, \tau)$ associated with M and τ in the sense of Segal [16]. In §2, we give a characterization of spectral subspaces. For every $\gamma \in \Gamma$, we put $M_{\gamma} = \{x \in M : \alpha_g(x) = \langle g, \gamma \rangle x, g \in G\}$. Suppose that the center $\mathfrak{Z}(M_0)$ of M_0 is contained in the center $\mathfrak{Z}(M)$ of M. If $M_{\gamma} \neq \{0\}$, then there is a partial isometry u_{γ} in M_{γ} and a projection e_r in $\mathfrak{Z}(M_0)$ such that $M_r = M_0 u_r$ and $u_r^* u_r = u_r u_r^* = e_r$. In particular, if M_{\circ} is a factor, then we may choose a unitary element u_{τ} in M_{τ} such that $M_{\tau} = M_0 u_{\tau}$. In §3, we first define the cocycles of canonical leftinvariant subspaces of $L^2(M, \tau)$. If M_0 is a factor, then every two-sided invariant subspace is left-pure and left-full. As the main result in this paper, we show that, if $\mathfrak{Z}(M_0) \subset \mathfrak{Z}(M)$ and if there is no nonzero projection p of $\mathfrak{Z}(M_0)$ with $Mp = M_0p$, then $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M if and only if M_0 is a factor and $Sp\alpha$ is a subgroup (of Γ) with an archimedean order.

Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.