A UNIFORMITY OF DISTRIBUTION OF G_Q IN G_A

Atsushi Murase

(Received August 13, 1982)

Introduction. 0-1. Let G be a connected and semisimple linear algebraic group defined over Q. Denote by G_Q and G_A the group of Q-rational points of G and the adele group of G, respectively. We identify G_Q with a subgroup of G_A in a natural manner. Then G_Q is discrete in G_A and the quotient $G_Q \setminus G_A$ has a finite volume for a G_A -invariant measure.

In his paper [6], Kuga proposed the following problem:

How the set of points of G_o is distributed in G_A ?

He gave an answer for the case that G is a Q-form of SL(2) of Q-rank 0. With the help of Kuga's basic idea ("Kuga's criterion", see Proposition 1) and a deep result of representation theory due to Howe and Moore [5], the present author [9] showed a uniformity of distribution of G_Q in G_A with respect to a Haar measure dg on G_A when G is simply connected, absolutely almost simple and furthermore has Q-rank zero. Roughly speaking, we showed that, for a relatively compact open subset X of G_A , the main term of the number $|X \cap G_Q|$ is equal to $\int_x dg$, if $\int_x dg$ is sufficiently large. Here we normalize the Haar measure dg on G_A by $\int_{C_Q \setminus C_A} dg = 1$. (In fact, we must impose some additional conditions on X. For detail, see Theorem.)

The object of the present paper is to show that the above result is also available even if G has Q-rank greater than zero.

0-2. To explain our result more precisely, denote by G_f (resp. G_{∞}) the finite (resp. infinite) part of G_A ; $G_f = \prod_p' G_{Q_p}$ (the restricted direct product), $G_{\infty} = G_R$. Then we have $G_A = G_f \cdot G_{\infty}$. For a finite set \mathscr{S} of finite places of Q, put $G_f(\mathscr{S}) = \prod_{p \in \mathscr{S}} G_{Q_p} \times \prod_{p \in \mathscr{S}} G_{Z_p}$, which is an open subgroup of G_f .

Consider a sequence $\{X_j\}_{j=1}^{\infty}$ of relatively compact open subsets of G_A . A sequence $\{X_j\}_{j=1}^{\infty}$ is said to be of Hecke type if the following two conditions (0.1)-(0.2) are satisfied:

(0.1) Each X_j has the form $S(j) \times U$, where S(j) is an open compact subset of $G_f(\mathscr{S})$ for a fixed finite set \mathscr{S} of finite places of Q and U is a fixed relatively compact domain in G_{∞} .