Tôhoku Math. Journ. 36 (1984), 141-148.

THE MULTIPLICITY OF HELICES FOR A REGULARLY INCREASING SEQUENCE OF σ -FIELDS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Takashi Shimano

(Received March 29, 1983)

1. Introduction. The notion of helices was introduced in the theory of measure-preserving transformations as an application of the martingale theory by J. de Sam Lazaro and P. A. Meyer [2]. The multiplicity of helices has been discussed by the author in the same manner as that of square-integrable martingales [4], [5]. In this paper, we determine the multiplicity of helices under some condition of the regularity on an increasing sequence of sub- σ -fields.

2. Preliminaries. Throughout this paper (Ω, F, P) denotes a complete separable probability space and T an automorphism of Ω , that is, a bimeasurable measure-preserving bijection. Let F_0 be a complete proper sub- σ -field of F such that

(a)
$$F_n \subset F_{n+1}$$
 for all $n \in \mathbb{Z}$,
(b) $\bigvee_{n \in \mathbb{Z}} F_n = F$

where $Z = \{0, \pm 1, \pm 2, \dots\}$ and F_n denotes the sub- σ -field $T^n F_0$. A pair (T, F_0) is called a system.

Let H denote the class of all squarely integrable real random variables with expectations 0, which is an infinite dimensional Hilbert space under the ordinary inner product, and H_n the subspace of H consisting of all elements measurable with respect to F_n for each $n \in Z$.

DEFINITION 1. A sequence $X = (x_n)_{n \in \mathbb{Z}}$ in H is called a helix of (T, F_0) if the following conditions are satisfied:

(a)
$$x_{\scriptscriptstyle 0}=0$$
 ,
(b) $x_{\scriptscriptstyle n}-x_{\scriptscriptstyle n-1}\!\in H_{\scriptscriptstyle n}\cap H_{\scriptscriptstyle n-1}^{\scriptscriptstyle \perp}$ for all $n\in Z$

where \perp indicates the orthogonal complementation in H,

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540098), The Ministry of Education.