Tôhoku Math. Journ. 36 (1984), 75-80.

THE SECOND COHOMOLOGY GROUPS OF THE GROUP OF UNITS OF A Z_p -EXTENSION

HIROSHI YAMASHITA

(Received February 4, 1983, revised March 29, 1983)

Let p be a prime number. We denote by K_0 a finite algebraic number field, by K_{∞} a \mathbb{Z}_p -extension of K_0 and by K_n the cyclic subextension of degree p^n . Let E_{∞} be the unit group of K_{∞} . Put $\Gamma_n = \operatorname{Gal}(K_n/K_0)$ and $\Gamma = \operatorname{Gal}(K_{\infty}/K_0)$. In connection with the Leopoldt conjecture and Greenberg conjecture, Iwasawa [5] posed the problem of studying the structure of $H^2(\Gamma, E_{\infty})$. Let S_n be the set of prime ideals of K_n ramified in K_{∞} , and D_n be the *p*-Sylow subgroup of the ideal class group generated by the ideals $\prod \mathfrak{p}^{\sigma}$ for $\mathfrak{p} \in S_n$, where \mathfrak{p}^{σ} runs through all different conjugates of \mathfrak{p} over K_0 . We consider the inductive limit D_{∞} of D_n by means of the natural map. In this paper, we shall give a partial answer,

$$H^2(\Gamma, E_\infty) \cong (\boldsymbol{Q}_p/\boldsymbol{Z}_p)^{s_0-r_p-1}$$

where $r_p = \text{ess. rank } D_{\infty}$ and $s_0 = \# S_0$.

While preparing this paper, the author received the preprint by Iwasawa entitled "On cohomology groups of units for \mathbb{Z}_p -extensions" in which he also obtains a similar result. (The paper has since appeared in [6].)

The author wishes to thank Y. Kida for reading the first draft and giving valuable advice and suggestion.

1. We define the essential rank for a Z_p -module M, which is denoted by ess. rank M, as the dimension of $M\bigotimes_{Z_p} Q_p$. For a p-primary torsion abelian group, we also define the essential rank as that of the Pontrjagin dual.

LEMMA 1. Let $\{M_n\}_{n\geq 0}$ be a family of finite abelian p-groups with bounded p-ranks. For $m > n \geq 0$, let $\varphi_{m,n} \colon M_n \to M_m$ (resp. $\psi_{m,n} \colon M_m \to M_n$) be homomorphisms giving rise to an inductive system $\{M_n, \varphi_{m,n}\}$ (resp. projective system $\{M_n, \psi_{m,n}\}$). If the orders of Ker $(\varphi_{m,n})$ and Coker $(\psi_{m,n})$ are bounded with respect to m and n, then we have ess. rank ind $\lim \{M_n, \varphi_{m,n}\}$ = ess.rank proj $\lim \{M_n, \psi_{m,n}\}$.

PROOF. Let M_n^* be the dual abelian group of M_n and $\psi_{m,n}^*$ be the