LOWER BOUNDS FOR THE EIGENVALUES OF THE FIXED VIBRATING MEMBRANE PROBLEMS

HAJIME URAKAWA

(Received March 18, 1983)

1. Introduction. Let Ω be a bounded domain of the Euclidean space \mathbb{R}^n with appropriately regular boundary $\partial \Omega$. We consider the classical fixed vibrating membrane problem:

$$\Delta u = \lambda u$$
 on Ω and $u = 0$ on $\partial \Omega$.

Here Δ is the standard Laplacian $-\sum_{i=1}^{n} \partial^2 / \partial(x_i)^2$ of the Euclidean space \mathbb{R}^n . Let $\{\lambda_1 < \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots \uparrow \infty\}$ be the eigenvalues of this problem counted with their multiplicities.

G. Pólya conjectured (cf. [8])

(1.1)
$$\lambda_k \geq C_n \operatorname{Vol}(\Omega)^{-2/n} k^{2/n} \quad \text{for every} \quad k ,$$

which was proved by him in case of space-covering domains Ω . That is, an infinity of domains congruent to Ω cover the whole space \mathbb{R}^n without gaps and without overlapping except a set of measure zero. Here the positive constant C_n is $4\pi^2 \omega_n^{-2/n}$, $\omega_n = \pi^{n/2} / \Gamma((n/2) + 1)$ is the volume of the unit ball and $\operatorname{Vol}(\Omega)$ is the volume of Ω . The conjecture of Pólya is closely related to H. Weyl's asymptotic formula (cf. [10])

(1.2)
$$\lambda_k \sim C_n \operatorname{Vol}(\Omega)^{-2/n} k^{2/n} \text{ as } k \to \infty$$
,

which shows the sharpness of Pólya's bounds for higher eigenvalues.

E. H. Lieb [5] has showed that (1.1) is true when C_n is replaced by a smaller constant $D_n^{-2/n}$ where $D_s^{-2/3} = C_s \times 0.2773$ and $D_s = 0.1156$. Recently S. Y. Cheng and P. Li (cf. [11, p. 22]) showed

(1.3)
$$\lambda_k \ge A_n \operatorname{Vol}(\Omega)^{-2/n} k^{2/n} \quad \text{for every} \quad k ,$$

which is valid for general compact riemannian manifold with smooth boundary. Here the constant A_n is $2 c n^{-1} e^{-2/n}$, $c = c'^2 ((n-2)/(2n-2))^2$ and c' is the Sobolev constant $n \omega_n^{1/n}$ which satisfies the inequality $\operatorname{Vol}(\partial \Omega)^n \geq c'^n \operatorname{Vol}(\Omega)^{n-1}$. It should be noted that the constant A_n is asymptotically $e^{22^{-1}n^{-1}}$ as $n \to \infty$.

In this paper, we show the following:

THEOREM 1. For every eigenvalue λ_k of the fixed vibrating membrane