THE FUNCTIONAL EQUATION OF ZETA DISTRIBUTIONS ASSOCIATED WITH FORMALLY REAL JORDAN ALGEBRAS

Dedicated to Prof. M. Koecher on his sixtieth birthday

I. SATAKE AND J. FARAUT

(Received February 17, 1984)

The purpose of this paper is to give an explicit expression for the Fourier transform of the zeta distributions on a certain class of prehomogeneous spaces defined by Jordan algebras.

Let V be a formally real simple Jordan algebra over R. Let $\dim V = n$ and $\operatorname{rk} V = r$ (for definition, see 1.1). We fix a (positive definite) inner product on V defined by

$$\langle x, y \rangle = \frac{r}{n} \operatorname{tr}(T_{xy}) \quad (x, y \in V) ,$$

where T_x denotes the linear transformation of V defined by $T_x(y) = xy$. The "structure group" of V, $G = \operatorname{Str}(V)$ (see 1.2), is then self-adjoint with respect to $\langle \ \rangle$, and hence is a reductive algebraic group. It is well-known that the pair (G,V) is a (real) prehomogeneous vector space in the sense of Sato-Shintani [6], i.e. if one denotes by G_c and V_c the complexifications of G and V, respectively, G_c is transitive on the Zariski-open set

$$V_c^{\times} = \{x \in V_c \, | \, N(x) \neq 0\}$$

(see [5c]). Here N denotes the "reduced norm" of V, which is an absolutely irreducible homogeneous polynomial function on V of degree r, characterized by the property:

(2)
$$N(1) = 1$$
, $N(gx) = \det(g)^{r/n} N(x)$ $(g \in G^{\circ}, x \in V)$,

where G° is the identity connected component of G.

The set of real invertible elements $V^{\times} = V \cap V_c^{\times}$ is decomposed into the disjoint union of r+1 (open) G° -orbits:

$$V^{ imes}=\coprod_{i=0}^r arOmega_i$$
 ,

where Ω_i is the set of elements of signature (r-i, i) ([5c]). In particular,