ON THE STARK-SHINTANI CONJECTURE AND CYCLOTOMIC Z_p -EXTENSIONS OF CLASS FIELDS OVER REAL QUADRATIC FIELDS II

JIN NAKAGAWA

(Received October 5, 1983)

Introduction. Let p be a prime number, and denote by Z_p the ring of p-adic integers. In our previous paper [9], we have constructed certain cyclotomic Z_p -extensions $M_{\infty} = \bigcup_{n\geq 0} M_n$ such that the Stark-Shintani invariants for M_n are units of M_n for each $n\geq 0$. In this paper, we study the image of these units in the completion of M_{∞} at a prime over p.

Let F be a real quadratic field embedded in the real number field F. Let F be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into F, splits. Let F be the conductor of F. Denote by F, the group consisting of all narrow ray classes of F defined modulo F. Let F be the subgroup of F corresponding to F by class field theory. Take a totally positive integer F of F satisfying F and denote by the same letter F the narrow ray class modulo F represented by the principal ideal F belonging to the ray class F where F runs over all integral ideals of F belonging to the ray class F. Then the Stark-Shintani ray class invariant F is defined by

(1)
$$X_{i}(c) = \exp(\zeta'_{F}(0, c) - \zeta'_{F}(0, c\nu))$$

(Stark [12], [13], Shintani [11]). Put $X_{\mathfrak{f}}(c, G) = \prod_{g \in G} X_{\mathfrak{f}}(cg)$.

CONJECTURE ([12], [13], [11]). For some positive rational integer m, $X_i(c, G)^m$ is a unit of M ($\forall c \in H_F(\mathfrak{f})/G$). Moreover, $\{X_i(c, G)^m\}^{\sigma(c_0)} = X_i(cc_0, G)^m$ ($\forall c, c_0 \in H_F(\mathfrak{f})/G$), where σ is the Artin isomorphism of $H_F(\mathfrak{f})/G$ onto the Galois group Gal (M/F).

Denote by M^+ the maximal totally real subfield of M. Then Shintani proved that the conjecture is true if M^+ is abelian over the rational number field Q ([11]). In our previous paper, we have studied the integer m in the conjecture when M^+ is abelian over Q, and we have constructed abelian extensions M of F with the following property (P) for an odd prime number p (cf. Theorem 1, Propositions 8, 9, 10 and 13 of [9]):