A REMARK ON MINIMAL FOLIATIONS OF CODIMENSION TWO

FABIANO BRITO*

(Received June 4, 1983)

0. Introduction. A foliation \mathscr{F} of a closed Riemannian manifold W is minimal if the leaves are minimal submanifolds of W. A foliation is taut if there is a metric on W for which the foliation is minimal.

Sullivan [S], Rummler [R] and Haefliger [H] found geometrical and topological characterizations of these foliations. A codimension one oriented foliation is taut if and only if every compact leaf is cut out by a closed transversal (Sullivan). For general codimension there is a necessary and sufficient condition for \mathscr{F} to be taut that depends only on the holonomy pseudo group of the foliation (Haefliger). If the leaves of \mathscr{F} are all compact then \mathscr{F} is taut if and only if \mathscr{F} is stable (Rummler).

Recently, Oshikiri [O], proved that for \mathscr{F} of codimension one and W with non-negative Ricci curvature tensor, \mathscr{F} minimal implies that \mathscr{F} and \mathscr{F}^{\perp} are totally geodesic, where \mathscr{F}^{\perp} denotes the normal flow to \mathscr{F} . In particular, \mathscr{F} is defined by a closed form.

In this paper we generalize this theorem for the case of codimension two. Precisely, we prove the following:

THEOREM. Let W^{n+2} be an oriented closed (n+2)-dimensional Riemannian manifold and \mathscr{F}_1 a minimal, codimension two C^{∞} foliation of W. Suppose the normal distribution of \mathscr{F}_1 , say \mathscr{F}_2 , is C^{∞} and integrable and that both \mathscr{F}_1 and \mathscr{F}_2 are orientable.

- (1) If Ricc (W) > 0 then $\varepsilon(\mathscr{F}_2) \neq 0$.
- (2) If $\operatorname{Ricc}(W) \geq 0$ then either \mathscr{F}_1 is totally geodesic or $\varepsilon(\mathscr{F}_2) \neq 0$. (Both can occur simultaneously.)
- (3) If W has non-negative sectional curvature then either $\varepsilon(\mathscr{F}_2) \neq 0$ or \mathscr{F}_1 and \mathscr{F}_2 are totally geodesic. (Both can occur simultaneously.) Here $\varepsilon(\mathscr{F}_2)$ denotes the Euler class of \mathscr{F}_2 and $\mathrm{Ricc}(W)$ is the Ricci curvature tensor of W.

REMARKS.

(a) For the case of non-negative sectional curvature the theorem

^{*} Supported in part by FAPESP-BRAZIL.