The Fejér-Riesz inequality for Siegel domains

NOZOMU MOCHIZUKI

(Received October 28, 1983)

Introduction. The classical Fejér-Riesz inequality ([2]) was extended from the unit disc of the complex plane C to balls and polydiscs of C^n ([4], [9], and [10]). For unbounded domains, Hille and Tamarkin derived an analogous inequality. Let $f \in H^p(\mathbb{R}^2_+)$, $1 \leq p < \infty$, where \mathbb{R}^2_+ denotes the upper half-plane $\{z \in C | \operatorname{Im} z > 0\}$. Then the following holds for every $x \in \mathbb{R}$ ([5, Theorem 4.1]):

$$(1) \qquad \qquad \int_{R_+} |f(x+iy)|^p dy \leq 2^{-1} \sup_{y>0} \int_{R} |f(x+iy)|^p dx ,$$

where R_+ denotes the positive numbers. Kawata [6] and Krylov [8] showed that the main results of the Hille-Tamarkin's H^p theory are valid for all p > 0. The inequality (1) is also seen to hold in this case. Our purpose is to deal with this inequality in a setting of higher dimensions and a wider class of functions. We shall obtain an inequality of the same sort for functions u such that $u \ge 0$ and $\log u$ are plurisubharmonic on certain Siegel domains in $C^n \times C^m$. The principal result is Theorem 1 in Section 2. Section 3 is concerned with Hardy space results.

1. Preliminaries. Let u be a real-valued function on \mathbb{R}^2_+ . If $u \ge 0$ and $\log u$ is subharmonic we shall call u a log. subharmonic function. Such functions are called functions of class PL and then basic properties are found in [11]. We shall denote by $LH^p(\mathbb{R}^2_+)$, 0 , the class of log. subharmonic functions <math>u satisfying the condition

(2)
$$M(u, p; \mathbf{R}_{+}^{2}):= \sup_{y>0} \int_{\mathbf{R}} u(x+iy)^{p} dx < \infty$$
.

Let Ω be an open cone in \mathbb{R}^n which is the interior of the convex hull of *n* linearly independent half-lines starting from the origin. We shall call Ω an *n*-polygonal cone. The tube domain with base Ω is defined by $T_{\Omega} = \{X + iY \in \mathbb{C}^n | X \in \mathbb{R}^n, Y \in \Omega\}$. Let *u* be a real-valued function defined on T_{Ω} and $u \ge 0$. If $\log u$ is plurisubharmonic we shall call *u* a log.

Partially supported by the Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.