LIMITS OF SEQUENCES OF RIEMANN SURFACES REPRESENTED BY SCHOTTKY GROUPS

(To Professor Yukio Kusunoki on the occasion of his 60th birthday)

HIROKI SATO

(Received September 5, 1983)

0. Introduction. In this paper, we state an application of the interchange operators introduced in the previous paper [8]. We consider the following problem. We give a point τ in an augmented Schottky space $\hat{\mathfrak{S}}_{g}^{*}(\widetilde{\Sigma}_{0})$ associated with $\widetilde{\Sigma}_{0}$, which represents a compact Riemann surface S with nodes. Then for any sequence of points $\{\tau_{n}\}$ in the Schottky space $\mathfrak{S}_{g}(\widetilde{\Sigma}_{0})$ associated with $\widetilde{\Sigma}_{0}$ tending to the point τ , does the Riemann surfaces $S(\tau_{n})$ represented by τ_{n} converge to S as marked surfaces as $n \to \infty$?

The answer to this problem is negative in the general case, namely in the case where $\tilde{\Sigma}_0$ is a basic system of Jordan curves (see § 1.2 for the definition). However the answer is affirmative in a special case, namely in the case where $\tilde{\Sigma}_0$ is a standard system of Jordan curves (see § 1.2 for the definition). Now the following question arises: To what Riemann surfaces does the sequence of Riemann surfaces $\{S(\tau_n)\}$ converge as marked surfaces as $n \to \infty$ in the general case? The answer is the main result (Theorem 2 in § 6) in this paper.

We use the same notation and terminologies as in [8]. In §1, we will define convergence of Riemann surfaces, and in §2, we will show the following: For any point τ in an augmented Schottky space, there exists a sequence of points $\{\tau_n\}$ in the Schottky space tending to τ such that the sequence of Riemann surfaces $\{S(\tau_n)\}$ represented by τ_n converges to the Riemann surface $S(\tau)$ represented by τ as marked surfaces as $n \to \infty$. In §3, we will construct a new surface from a given surface. From §4 through §6, we will state and prove the main theorem. In §7, we will explain the result by an example.

1. Definitions and terminologies

1.1. We use the same notation and terminologies as in the previous papers [7, 8].

Partly supported by the Grants-in-Aid for Scientific and Co-operative Research, the Ministry of Education, Science and Culture, Japan.