Tôhoku Math. Journ. 37 (1985), 95-99.

GENERALIZED INVERSES OF TOEPLITZ OPERATORS AND INVERSE APPROXIMATION IN H²

SAICHI IZUMINO

(Received January 12, 1984, revised August 1, 1984)

1. Introduction. Let H^2 (resp. H^{∞}) be the Hardy space of analytic functions in the open unit disc D with square-integrable (resp. essentially bounded measurable) boundary functions, and let π_k ($k \in N := \{0, 1, \dots\}$) be the linear subspace of all polynomials with degree at most k. Following Chui [1], we then define, for $f \in H^{\infty}$, the least-squares inverse in π_k of f as the (unique) polynomial $g = g_k$ such that the L^2 -norm on the unit circle C

$$\|1 - fg\|_{_2} := \left\{ (2\pi)^{_{-1}} \int_{-\pi}^{\pi} |1 - f(e^{it})g(e^{it})|^2 dt
ight\}^{^{1/2}}$$

is minimal when g runs over π_k . Furthermore, the double least-squares inverse $h_{n,k}$ in π_n of f through π_k is defined as the least-squares inverse in π_n of g_k . Using orthogonal polynomials, Chui [1] proved that each g_k is zero-free in the closed unit disc \overline{D} , and that if $f \in \pi_n$ then each $h_{n,k}$ is a very good approximant of f in the same π_n which has no zeros in \overline{D} .

Now, let A be a (bounded linear) operator on H^2 , $\phi \in H^2$ and consider the equation

$$(1.1) Ag = \phi , \quad g \in H^2 .$$

Then an element $g \in H^2$ which minimizes the norm $||Ag - \phi||_2$ is called a least-squares solution of (1.1). It is well-known (cf. [3], [7]) that if Ahas closed range the least-squares solution with minimum norm is unique and is represented as $A^{\dagger}\phi$, where A^{\dagger} stands for the (Moore-Penrose) generalized inverse of A. (The generalized inverse is uniquely determined by the four Penrose identities, $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^* = AA^{\dagger}$ and $(A^{\dagger}A)^* = A^{\dagger}A$.)

Suppose that T_f is the Toeplitz operator with symbol $f \in H^{\infty}$, and that E_k is the orthogonal projection from H^2 onto π_k (as a subspace of H^2). Then the product $T_f E_k$ is of finite rank, and hence has closed range. The solution $(T_f E_k)^{\dagger} 1 = E_k (T_f E_k)^{\dagger} 1$ of (1.1) for $A = T_f E_k$, $\phi = 1$ is nothing but the least-squares inverse g_k defined before. Similarly the double least-squares inverse of f is represented as $h_{n,k} = (T_{g_k} E_n)^{\dagger} 1$. Hence