GENERALIZED INVERSES OF TOEPLITZ OPERATORS AND INVERSE APPROXIMATION IN *H²*

SAICHI IZUMINO

(Received January 12, 1984, revised August 1, 1984)

1. Introduction. Let H^2 (resp. H^{∞}) be the Hardy space of analytic functions in the open unit disc *D* with square-integrable (resp. essentially bounded measurable) boundary functions, and let π_k ($k \in N := \{0, 1, \dots\}$) be the linear subspace of all polynomials with degree at most *k.* Following Chui [1], we then define, for $f \in H^{\infty}$, the least-squares inverse in π_k of f as the (unique) polynomial $g = g_k$ such that the L^2 -norm on the unit circle *C*

$$
\|1-fg\|_{{\scriptscriptstyle 2}}\!\!:=\Big\{(2\pi)^{-1}\!\!\int_{-\pi}^{\pi}|1-f(e^{\imath t})g(e^{\imath t})|^{\scriptscriptstyle 2}dt\Big\}^{{\scriptscriptstyle 1/2}}
$$

is minimal when *g* runs over *π^k .* Furthermore, the double least-squares inverse $h_{n,k}$ in π_n of f through π_k is defined as the least-squares inverse in *πⁿ* of *g^k .* Using orthogonal polynomials, Chui [1] proved that each *g^k* is zero-free in the closed unit disc \bar{D} , and that if $f \in \pi_n$ then each $h_{n,k}$ is a very good approximant of f in the same π_n which has no zeros in \bar{D} .

Now, let A be a (bounded linear) operator on H^2 , $\phi \in H^2$ and consider the equation

$$
(1.1) \t\t\t Ag = \phi , \t\t\t g \in H^2 .
$$

Then an element $g \in H^2$ which minimizes the norm $\|Ag - \phi\|_2$ is called a least-squares solution of (1.1). It is well-known (cf. [3], [7]) that if *A* has closed range the least-squares solution with minimum norm is unique and is represented as $A^{\dagger} \phi$, where A^{\dagger} stands for the (Moore-Penrose) gen eralized inverse of *A.* (The generalized inverse is uniquely determined by the four Penrose identities, $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^* = AA^{\dagger}$ and $(A^{\dagger}A)^* = A^{\dagger}A.$

Suppose that T_f is the Toeplitz operator with symbol $f \in H^{\infty}$, and that E_k is the orthogonal projection from H^2 onto π_k (as a subspace of H^2). Then the product T_fE_k is of finite rank, and hence has closed range. The solution $(T_f E_k)^{\dagger}1 = E_k (T_f E_k)^{\dagger}1$ of (1.1) for $A = T_f E_k$, $\phi = 1$ is nothing but the least-squares inverse g_k defined before. Similarly the double least-squares inverse of f is represented as $h_{n,k} = (T_{g_k}E_n)^t$. Hence