SQUARE-INTEGRABLE HOLOMORPHIC FUNCTIONS ON A CIRCULAR DOMAIN IN C^{n}

Kazuo Azukawa

(Received June 6, 1983)
0. Introduction. In the preceding paper [2], square-integrable holomorphic n-forms on an n-dimensional complex manifold are studied, and invariants $\mu_{0, m}$ are introduced. The purpose of this paper is to examine how $\mu_{0, m}$ are expressed when the manifold is a circular domain in the n-dimensional complex Euclidean space \boldsymbol{C}^{n}, and to provide several examples concerning these invariants.

Let D be a circular domain in C^{n} which is not necessarily bounded. Let $H(D)$ be the Hilbert space of all square-integrable holomorphic functions on D, and for every integer m, let $H_{m}(D)$ be the subspace of $H(D)$ whose elements are m-homogeneous on D (see Definition 1.1). Then $H_{m}(D)$ are mutually orthogonal. If D is proper, then $H_{m}(D)=\{0\}$ for $m<0$, and all elements of $H_{m}(D)$ for $m \geqq 0$ are actually homogeneous polynomials of degree m. Now, suppose that D is proper and has a finite volume $V(D)$. Let $K(z, \bar{w})=\sum_{m=0}^{\infty} K_{m}(z, \bar{w})$ be the Bergman kernel of D, where K_{m} are homogeneous polynomials of degree m with respect to each of the variables z and \bar{w}. Then it is shown that

$$
\mu_{0, m}\left(\left(\partial_{v}\right)_{o}\right)=V(D)(m!)^{2} K_{m}(v, \bar{v})
$$

for $v \in C^{n}$, where $\partial_{\left(v^{1}, \cdots, v^{n}\right)}=\sum_{j} v^{j} \partial / \partial z^{j}$ (Theorem 2.2). Furthermore, if D is bounded, then every polynomial K_{m} is written as follows (Corollary 2.4):

$$
K_{m}(z, \bar{w})=\left(z^{I_{1}}, \cdots, z^{I_{N}}\right) \bar{G}^{-1}\left(w^{I_{1}}, \cdots, w^{I_{N}}\right)^{*}
$$

where $\left(I_{1}, \cdots, I_{N}\right)\left(N=\left(\begin{array}{c}n+\underset{m}{m}-1\end{array}\right)\right)$ is a numbering of the indices of the set $\left\{\left(i_{1}, \cdots, i_{n}\right) \in \boldsymbol{Z}_{+}^{n} ; i_{1}+\cdots+i_{n}=m\right\}$ and $G=\left(\left(z^{I_{i}}, z^{I_{j}}\right)\right)_{i, j}$ is the Gram matrix of the system ($z^{I_{1}}, \cdots, z^{I_{N}}$) of monomials with respect to the inner product on $H(D)$.

It is well-known ([7], [10]) that when a domain carries a Bergman metric g, the holomorphic sectional curvature of g does not exceed 2. In §3, we see the following from examples:
(i) There exists a domain D in C^{2} with positive, finite dimensional $H(D)$. Moreover, there exists a domain in C^{2} for which the holomorphic

