EXPOSED POINTS AND EXTREMAL PROBLEMS IN H^1 , II

TAKAHIKO NAKAZI*

(Received March 21, 1984)

ABSTRACT. If $\phi \in L^{\infty}$, we denote by T_{ϕ} the functional defined on the Hardy space H^1 by

$$T_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i\theta}) \phi(e^{i\theta}) d\theta/2\pi$$
.

Let S_{ϕ} be the set of functions in H^1 which satisfy $T_{\phi}(f) = ||T_{\phi}||$ and $||f||_1 \leq 1$. If S_{ϕ} is not empty and weak*-compact, a description of S_{ϕ} was given in the first part of this paper. In this paper, the structure of S_{ϕ} is studied generally. Moreover, we give a characterization of exposed points, that is, g in H^1 such that $S_{\phi} = \{g\}$ for some ϕ .

1. Introduction. Let U be the open unit disc in the complex plane and let ∂U be the boundary of U. If f is analytic in U and $\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$ is bounded for $0 \leq r < 1$, then $f(e^{i\theta})$, which we define to be $\lim_{r \to 1} f(re^{i\theta})$, exists almost everywhere on ∂U . If

$$\lim_{r \to 1} \int_{-\pi}^{\pi} \log^+ |f(re^{i heta})| d heta = \int_{-\pi}^{\pi} \log^+ |f(e^{i heta})| d heta$$
 ,

then f is said to be in the class N_+ . The set of all boundary functions in N_+ is denoted by N_+ again. For $0 , the Hardy space <math>H^p$ is defined as $N_+ \cap L^p$. If $1 \leq p \leq \infty$, it coincides with the space of functions in L^p whose Fourier coefficients with negative indices vanish. If h in N_+ has the form

$$h(z) = \exp\left\{\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log |h(e^{it})| dt/2\pi + i\alpha\right\} \quad (z \in U)$$

for some real α , then h is called an outer function. We call q in N_+ an inner function if $|q(e^{i\theta})| = 1$ a.e. on ∂U . Each nonzero f in H^1 has a unique factorization of the form f = qh, where q is an inner function and h is an outer function.

If $\phi \in L^{\infty}$, we denote by T_{ϕ} the functional defined on H^1 by

$$T_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i heta}) \phi(e^{i heta}) d heta/2\pi$$

^{*} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.