Tôhoku Math. Journ. 37 (1985), 151-195.

LARGE TIME ASYMPTOTICS FOR FUNDAMENTAL SOLUTIONS OF DIFFUSION EQUATIONS

MINORU MURATA

(Received October 11, 1983)

1. Introduction. The purpose of the present paper is to give asymptotic expansions as $t \to \infty$ of the fundamental solution of a diffusion equation in \mathbb{R}^n .

Let

(1.1)
$$A = \sum_{j,k=1}^{n} a_{jk}(x) \partial_{j} \partial_{k} + \sum_{j=1}^{n} b_{j}(x) \partial_{j} + c(x)$$

be an elliptic operator satisfying the following condition (A). Here $\partial_j = \partial/\partial x_j$.

(A. I) There exists a positive constant c_0 such that $\sum_{j,k} a_{jk}(x)\xi_j\xi_k \ge c_0 |\xi|^2$ for all $x, \xi \in \mathbb{R}^n$.

(A. II) The functions $a_{jk}(x)$, $b_j(x)$, c(x) are real-valued bounded functions on \mathbb{R}^n which are uniformly Hölder continuous with exponent θ $(0 < \theta \leq 1)$.

(A. III) There exist positive constants ρ and M such that for all $x \in \mathbb{R}^n$

(1.2)
$$\sum_{j,k=1}^{n} |a_{jk}(x) - \delta_{jk}| + \sum_{j=1}^{n} \langle x \rangle |b_{j}(x)| + \langle x \rangle^{2} |c(x)| \leq M \langle x \rangle^{-\rho},$$

where δ_{jk} is Kronecker's delta and $\langle x \rangle = (1 + |x|^2)^{1/2}$. Let U(t, x, y) be the fundamental solution of the diffusion equation

$$(1.3) \quad \partial_t U(t, x, y) = A U(t, x, y) \text{ in } (0, \infty) \times \mathbf{R}^n \text{ , } \quad U(0, x, y) = \delta(x - y) \text{ ,}$$

where $\partial_t = \partial/\partial t$ and $\delta(z)$ is the delta function. For σ in \mathbb{R}^1 , we denote by $[\sigma]$ the largest integer smaller than or equal to σ . One of our main results is the following theorem.

THEOREM 1.1. Let $c(x) \equiv 0$ and U(t, x, y) be the corresponding fundamental solution. Then for any σ with $0 \leq \sigma < \rho/2$ there hold the following formulas for all t > 1 and $(x, y) \in \mathbb{R}^{2n}$:

(i) For n odd,

(1.4)
$$U(t, x, y) = \sum_{j=0}^{[\sigma]} t^{-n/2-j} U_j(x, y) + \tilde{U}_{\sigma}(t, x, y) ,$$

 $(1.5) |U_j(x, y)| \leq M_j (\langle x \rangle + \langle y \rangle)^{2j},$