BANACH ALGEBRA RELATED TO DISK POLYNOMIALS

YÛICHI KANJIN

(Received October 12, 1984)

Introduction. Let $\alpha \geq 0$, and let m and n be nonnegative integers. Disk polynomials $R_{m,n}^{(\alpha)}(z)$ are defined by

$$R_{m,n}^{(lpha)}(z) = egin{cases} R_n^{(lpha,m-n)}(2r^2-1)e^{i(m-n)\phi}r^{m-n} & ext{ if } & m \geq n \ R_m^{(lpha,n-m)}(2r^2-1)e^{i(m-n)\phi}r^{n-m} & ext{ if } & m < n \end{cases}$$

where $z = re^{i\phi}$ and $R_n^{(\alpha,\beta)}(x)$ is the Jacobi polynomial of degree n and of order (α,β) normalized so that $R_n^{(\alpha,\beta)}(1) = 1$.

Denote by $A^{(a)}$ the space of absolutely convergent disk polynomial series on the closed unit disk \bar{D} in the complex plane, that is, the space of functions f on \bar{D} such that

$$f(z)=\sum\limits_{m,n=0}^{\infty}a_{m,n}R_{m,n}^{\scriptscriptstyle{(lpha)}}(z)\quad ext{with}\quad \sum\limits_{m,n=0}^{\infty}|a_{m,n}|<\infty$$
 ,

and introduce a norm in $A^{(\alpha)}$ by

$$||f|| = \sum_{m,n=0}^{\infty} |a_{m,n}|$$
.

The space $A^{(\alpha)}$ consists of continuous functions on \bar{D} , since if $\sum |a_{m,n}| < \infty$ then the series $\sum a_{m,n} R_{m,n}^{(\alpha)}(z)$ converges uniformly on \bar{D} by the inequality;

$$|R_{m,n}^{(\alpha)}(z)| \leq 1 \quad \text{on } \bar{D} \quad \text{(Koornwinder [5; (5.1)])}.$$

Our purpose is to study some structure of the algebra $A^{(\alpha)}$.

Let $A^{(\alpha,\beta)}$ be the space of absolutely convergent Jacobi polynomial series $f(x) = \sum_{n=0}^{\infty} a_n R_n^{(\alpha,\beta)}(x)$, $\sum_{n=0}^{\infty} |a_n| < \infty$ on the closed interval [-1,1]. The space $A^{(\alpha,\beta)}$ has the structure of a Banach algebra with pointwise multiplication of functions. This is proved by the nonnegativity of the linearization coefficients of products of Jacobi polynomials (see Gasper [2]) Igari and Uno [3] and Cazzaniga and Meaney [1] studied some structure of the algebra $A^{(\alpha,\beta)}$, that is, the maximal ideal space, Helson sets, spectral synthesis, etc. For the space $A^{(\alpha)}$, we will consider some of these problems. In §§ 1 and 2, we will show that $A^{(\alpha)}$ is a Banach algebra by the nonnegativity of the linearization coefficients of products of disk polynomials that is proved by Koornwinder [6], and then determine the maximal ideal space of $A^{(\alpha)}$. Moreover, we will show that if $\alpha \geq 1$ and