ON THE LITTLEWOOD-PALEY AND MARCINKIEWICZ FUNCTIONS IN HIGHER DIMENSIONS

Makoto Kaneko* and Gen-Ichirô Sunouchi

(Received May 2, 1984)

1. Introduction. In this paper we deal with the generalized Littlewood-Paley, Marcinkiewicz and related square functions of spherical sense in the n-dimensional space. So our functions are different from Stein's $g_{\lambda}^{*}(\boldsymbol{x} ; f)$ [14. p. 99] and $\mathscr{D}_{\alpha}(f)(\boldsymbol{x})$ [15, p. 102].

In what follows, we shall use the following notations. $\boldsymbol{x}, \boldsymbol{\xi}, \cdots$ will denote points in the Euclidean n-space $\boldsymbol{R}^{n}(n \geqq 2)$. In coordinate notation we write $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) ;|\boldsymbol{x}|$ denotes the length of the vector \boldsymbol{x}, i.e., $|\boldsymbol{x}|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} ; \boldsymbol{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$ denotes the unit vector in the direction of \boldsymbol{x}, i.e., $\boldsymbol{x}^{\prime}=\boldsymbol{x} /|\boldsymbol{x}| ; \Sigma$ is the unit sphere, $|\boldsymbol{x}|=1$; and $d \sigma$ is the Euclidean element of measure on Σ, hence $\int_{\Gamma} d \sigma=2 \pi^{n / 2} / \Gamma(n / 2)$.

For $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$, the Schwartz space of rapidly decreasing C^{∞}-functions, the Fourier transform of f is defined by

$$
\tilde{f}(\boldsymbol{\xi})=\int_{\boldsymbol{R}^{n}} f(\boldsymbol{x}) e^{-2 \pi i x \cdot \boldsymbol{\xi}} d \boldsymbol{x},
$$

where $\boldsymbol{x} \cdot \boldsymbol{\xi}=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots+x_{n} \xi_{n}$. Throughout this paper, we assume $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$ unless otherwise specified.

If $K(\boldsymbol{x})=\Omega\left(\boldsymbol{x}^{\prime}\right) /|\boldsymbol{x}|^{n}$ is the Calderón-Zygmund kernel, then

$$
\tilde{f}_{\Omega}(\boldsymbol{x})=\lim _{\varepsilon \rightarrow 0} \int_{|\boldsymbol{y}|>\varepsilon} K(\boldsymbol{y}) f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y}
$$

exists almost everywhere and

$$
\left\|\widetilde{f}_{\Omega}\right\|_{p} \leqq A_{p}\|f\|_{p} \quad(1<p<\infty)
$$

\tilde{f}_{Ω} is a conjugate integral in n-dimensions.
The spherical mean of order $\alpha>0$ of f is

$$
\begin{equation*}
\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})=c_{\alpha} t^{-n} \int_{1,1<t}\left(1-|\boldsymbol{y}|^{2} / t^{2}\right)^{\alpha-1} f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y} \tag{1.1}
\end{equation*}
$$

where $c_{\alpha}=\Gamma(\alpha+n / 2) / \pi^{n / 2} \Gamma(\alpha)$. Also we define

[^0]
[^0]: * Partly supported by the Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

