Tôhoku Math. Journ. 37 (1985), 343-365.

ON THE LITTLEWOOD-PALEY AND MARCINKIEWICZ FUNCTIONS IN HIGHER DIMENSIONS

MAKOTO KANEKO* AND GEN-ICHIRÔ SUNOUCHI

(Received May 2, 1984)

1. Introduction. In this paper we deal with the generalized Littlewood-Paley, Marcinkiewicz and related square functions of spherical sense in the *n*-dimensional space. So our functions are different from Stein's $g_1^*(x; f)$ [14. p. 99] and $\mathscr{D}_{\alpha}(f)(x)$ [15, p. 102].

In what follows, we shall use the following notations. x, ξ, \cdots will denote points in the Euclidean *n*-space \mathbb{R}^n $(n \ge 2)$. In coordinate notation we write $\mathbf{x} = (x_1, x_2, \cdots, x_n); |\mathbf{x}|$ denotes the length of the vector \mathbf{x} , i.e., $|\mathbf{x}|^2 = x_1^2 + x_2^2 + \cdots + x_n^2; \mathbf{x}' = (x'_1, x'_2, \cdots, x'_n)$ denotes the unit vector in the direction of \mathbf{x} , i.e., $\mathbf{x}' = \mathbf{x}/|\mathbf{x}|; \Sigma$ is the unit sphere, $|\mathbf{x}| = 1$; and $d\sigma$ is the Euclidean element of measure on Σ , hence $\int_{\mathbf{x}} d\sigma = 2\pi^{n/2}/\Gamma(n/2)$.

For $f \in \mathscr{S}(\mathbb{R}^n)$, the Schwartz space of rapidly decreasing C^{∞} -functions, the Fourier transform of f is defined by

$$\widetilde{f}(oldsymbol{\xi}) = \int_{R^n} f(oldsymbol{x}) e^{-2\pi i oldsymbol{x} \cdot oldsymbol{\xi}} doldsymbol{x}$$
 ,

where $\mathbf{x} \cdot \mathbf{\xi} = x_1 \xi_1 + x_2 \xi_2 + \cdots + x_n \xi_n$. Throughout this paper, we assume $f \in \mathscr{S}(\mathbf{R}^n)$ unless otherwise specified.

If $K(\mathbf{x}) = \Omega(\mathbf{x}')/|\mathbf{x}|^n$ is the Calderón-Zygmund kernel, then

$$\widetilde{f}_{\varrho}(\boldsymbol{x}) = \lim_{\varepsilon \to 0} \int_{|\boldsymbol{y}| > \varepsilon} K(\boldsymbol{y}) f(\boldsymbol{x} - \boldsymbol{y}) d\boldsymbol{y}$$

exists almost everywhere and

$$\|\widetilde{f}_{\mathcal{Q}}\|_p \leq A_p \|f\|_p \quad (1$$

 \tilde{f}_{ρ} is a conjugate integral in *n*-dimensions.

The spherical mean of order $\alpha > 0$ of f is

(1.1)
$$(M_t^{\alpha}f)(\boldsymbol{x}) = c_{\alpha}t^{-n} \int_{|\boldsymbol{y}| < t} (1 - |\boldsymbol{y}|^2/t^2)^{\alpha-1} f(\boldsymbol{x} - \boldsymbol{y}) d\boldsymbol{y} ,$$

where $c_{\alpha} = \Gamma(\alpha + n/2)/\pi^{n/2}\Gamma(\alpha)$. Also we define

^{*} Partly supported by the Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.